• Title/Summary/Keyword: cellulose paper

Search Result 429, Processing Time 0.039 seconds

Comparison of cellulose DP measurements using the CED (Cupriethylene diamine) and NMMO(N-methylmorpholine-N-oxide) (CED(Cupriethylene diamine)과 NMMO (N-methylmorpholine-N-oxide)를 이용한 셀룰로오스의 중합도 측정법의 비교)

  • Lee, Min-Woo;Park, Ji-Soon;Park, Dong-Hui;Seo, Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.62-66
    • /
    • 2010
  • Cellulosic materials were dissolved by NMMO(N-methylmorpholine-N-oxide) and CED (Cupriethylene diamine), respectively, to measure their DPs (degrees of polymerization) by using viscometer. We changed cellulose DPs by applying various amounts of low intensity electron-beam radiation to the cellulosic materials. NMMO is environmental-friendly, non-toxic, and biodegradable organic cellulose solvent and used industrially because of its high cellulose dissolving power and high solvent recovery ratio. The cellulose DP measurement results using these two different chemicals were correlated highly ($R^2$ >0.95). It was also found that cellulose with high DP was dissolved more easily in NMMO than CED. In addition, NMMO method gave more higher resolution in the measurement.

Studies on Application of Spray of Nano-fibrillated Cellulose to Papermaking Process (분무방식에 의한 NFC(Nano-Fibrillated Cellulose)의 제지공정 적용 방안 탐색 연구)

  • Lee, Kwang Seob;Kim, Chang Geun;Lee, Jae Hoon;Lee, Tai Ju;Ryu, Jeong Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.5-12
    • /
    • 2015
  • In recent years, it had focused on the improvement of paper properties by addition of NFC (Nano-fibrillated Cellulose). Although the addition of NFC to wet-end of papermaking process could be suggested as a new solution to improve the strength properties of paper, it was not possible to avoid the bad drainage caused by the added NFC's chocking pores of wet web. Instead of the direct addition to wet-end, spraying of NFC to web in wire-section was tried in this study and evaluated by checking various paper properties including surface smoothness, tensile strength, folding endurance and stiffness. According to the increase of spraying amount of NFC, above mentioned paper properties were enhanced without excessive deterioration of drainage. Compared with direct introduction to wet-end, spraying could be regarded as a more proper method to enhance the surface smoothness and strength properties of paper.

Morphological and Physicochemical Changes of NBKP by Alkali Pretreatment (알카리 전처리에 의한 NBKP의 형태학적 및 이화학적 변화)

  • Mun, Sung-Phil;Jang, Min-Hwan
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.4
    • /
    • pp.58-64
    • /
    • 2009
  • This study was carried out to prepare high porosity pulp for oil and air filter media from commercial grade NBKP with 6 - 20% NaOH treatment. The fiber width of NBKP remarkably decreased by NaOH pretreatment. The air permeability of the test sheet prepared from alkali-pretreated NBKP increased with increasing NaOH concentration up to 15%. The burst factor was greatly decreased by alkali pretreatment. By 15 - 20% NaOH pretreatment of NBKP, it could be possible to prepare a high porosity pulp. It seems that the high porosity of the pulp was due to a strong swelling and a great change of the cellulose crystalline lattice from cellulose I to cellulose II with NaOH treatment of NBKP. The study suggested that alkali- pretreated NBKP could be used for manufacturing oil and air filter media.

Electro-Active-Paper Actuator Made with LiCl/Cellulose Films: Effect of LiCl Content

  • Wang, Nian-Gui;Kim, Jae-Hwan;Chen, Yi;Yun, Sung-Ryul;Lee, Sun-Kon
    • Macromolecular Research
    • /
    • v.14 no.6
    • /
    • pp.624-629
    • /
    • 2006
  • The cellulose-based, Electroactive Paper (EAPap) has recently been reported as a smart material with the advantages of lightweight, dry condition, biodegradability, sustainability, large displacement output and low actuation voltage. However, it requires high humidity.. This paper introduces an EAPap made with a cellulose solution and lithium chloride (LiCl), which can be actuated in room humidity condition. The fabrication process, performance test and effect of LiCl content of the EAPap actuator are illustrated. The bending displacement of the EAPap actuators was evaluated with actuation voltage, frequency, humidity and LiCl content changes. At a LiCl/ cellulose content of 3:10, the displacement output was maximized at a room humidity condition. Even though the displacement output was less than that of a high humidity EAPap actuator, the mechanical power output was not reduced due to the increased resonance frequency, which is promising for developing EAPap actuators that are less sensitive to humidity.

Micro-Fibrillated Cellulose Preparation with Enzyme Beating Pretreatment and Effect on Paper Strength Improvement (Enzyme beating 전처리를 통한 Micro-Fibrillated Cellulose 제조 및 지력증강 효과)

  • Ahn, Eun-Byeol;Hong, Sung-Bum;Kim, Kang-Jae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.57-65
    • /
    • 2015
  • Microfibrillated cellulose (MFC) or Nanofibrillated cellulose (NFC) has been used to reduce the use of raw pulp and to improve paper strength. The problem of MFC preparation is high manufacturing cost. In this study, it was carried out to prepare MFC after enzyme beating and estimated properties of MFC. Endo-D was the best beating efficiency among three type of endo-glucanase. As the grinder pass number increased, the viscosity and the fines of MFC suspension increased while the crystallinity and the porosity of MFC sheet decreased. Also enzyme beating MFC was higher value in the crystallinity and lower value in the viscosity than non-enzyme MFC. In addition, the aspect ratio of MFC was the highest at 5 pass. MFC addition improved the handsheet strength and the air permeability but worsened the drainage.

EFFECT OF ADDITIVES ON THE PYROLYSIS AND COMBUSTION OF CELLULOSE (셀룰로오스의 열분해에 대한 첨가제의 영향)

  • 심철호;박영수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.7 no.2
    • /
    • pp.169-178
    • /
    • 1985
  • In the previous paper, the kinetics of cellulose were described. In this study, the ability of some additives to act as a flame promoter for cellulose was investigated using dynamic thermogravimetry and differential scanning calorimetry. The treated cellulose was thermally decomposed through the two model as previously noted with the untreated cellulose. The first step was associated with the flaming combustion of volatile material released in the fraunentation process and the second was caused by the glowing combustion of carbonaceous residue. The first group of the additives, which could be divided into two groups by the pyrolytic mechanism of cellulose, appeared to catalyze the fragmentation, maximizing the degradation to produce tarry products, with gaseous flammable substrate. The heat evolved in flaming combustion mode was increased significantly by the treatment of the cellulose retained 1-5% of the first group additives.

  • PDF

The Study on Application of Hybrid Insulation System for Thermally Upgraded Distribution pole Transformers (주상변압기 열적 특성 향상을 위한 복합절연 시스템 적용)

  • Lee, B.S.;Song, I.K.;Lee, J.B.;Kim, D.M.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1896-1898
    • /
    • 2002
  • In this paper, to developing thermally and mechanically upgraded ones, we dismounted pole transformers used in the fields for over 13 years and conducted aged oil analysis. Also, when the cellulose and aramid papers in test cell were aging with oil at $130^{\circ}C$ for 3000 hours, with the testing period cellulose paper deteriorated more rapidly than the others. For example dielectric strength and dissipation factor of papers deteriorated with aging time. For evaluation of thermal aging characteristics, a mineral oil-immersed transformer was constructed with hybrid insulation system comprised of aramid paper and cellulose insulation. A Hybrid system has economic advantages. Cellulose materials are confined to cooler regions of the transformer winding. And aramid papers are served to insulate contact parts of hot conductors.

  • PDF

Improvement method for viscosity measurement of high viscosity paper and fabric cultural heritages (고점도 지류 및 섬유 문화재의 점도 측정 개선 방법 연구)

  • Kim, Young-Hee;Hong, Jin-Young;Jo, Chang-Wook;Kim, Soo Ji;Lee, Jeung-Min;Seo, Min Seok;Choi, Kyoung Hwa
    • 보존과학연구
    • /
    • s.34
    • /
    • pp.20-29
    • /
    • 2013
  • Paper, textile and wood materials are mainly consisted of cellulose. Cellulose is high molecule and make up the strong crystalline structure by hydrogen bonds. In particular, the polymerization degree of cellulose are closely related to the strength of fiber, and the permanence. the useful life of fiber, also depends on the degradation of this substance. The viscosity of cellulose is considered to be an important indicator of fiber damage in high molecule polymers. The viscosity measurements with CED solution is used to measure the molecular weight and the degree of polymerization of cellulose. Cellulose viscosity of wood fibers is measured with TAPPI standard method T230. However, TAPPI standard method T230 is difficult to completely dissolving the cellulose of high molecular weight and large degree of polymerization, such as Korea traditional papers and fabrics made with mulberry, ramie, cotton fibers. In this study, The high viscosity of hanji and fabric was measured with TAPPI standard method T254. T254 method is that the cellulose specimen with the proper amount of weaker (0.167M CED) solution, and completely dissolved with the stronger (1.0M CED) solution. It was found that cellulose with high degree of polymerization was dissolved more easily in general CED method.

  • PDF

Fertilization and Tree Density Effects on Cellulose Decomposition in a Larix leptolepis Plantation

  • Kim, Choonsig;Kim, Oue-Ryong;Ahn, Hyun-Chul;Cho, Hyun-Seo;Choo, Gab-Chul;Park, Jae-Hyeon
    • The Korean Journal of Ecology
    • /
    • v.25 no.6
    • /
    • pp.399-403
    • /
    • 2002
  • Cellulose mass loss by cellulose filter papers was measured for 3 time (35 days, 70 days, 105 days) incubation during the growing season (from May to September 2002) with different tree density and after fertilization in a Japanese larch (Larix leptolepis) plantation. Cellulose mass loss rates were significantly different between tree density types and fertilization treatments during the study periods. After 105 day incubation of cellulose filter paper, cellulose mass loss rates were significantly higher in the low tree density (70.1 $\%$) than in the high tree density (49.9$\%$). Cellulose mass loss rates averaged 62.8$\%$ in the fertilization and 58.9% in the unfertilization treatments during the same periods. However, cellulose mass loss was not significantly different between the forest floor and the mineral soil layer except for 35 day incubation. The results indicate that cellulose decomposition rates are a useful index to express differences in organic matter decomposition activity in different tree density and after fertilizer treatments.