• Title/Summary/Keyword: cellulose filter

Search Result 108, Processing Time 0.028 seconds

FT-NIR SPECTROSCOPY FOR QUALITY AND PROCESS CONTROL IN DEPTH FILTER SHEETS PRODUCTION

  • Jansen, Christoph;Ebert, Jurgen
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3122-3122
    • /
    • 2001
  • Documented quality control plays a vital role I the production of technical “Depth filter” sheets used in industries such as Beverage and pharmaceutical. Depth filter sheets which can be up to several millimeters thick are stacker in plate and frame filter systems. They are the core of stainless steel filter systems which can be up to several meters high. FT-NIR Spectroscopy has many potential applications in the whole production line of filter sheets. Raw materials such as different types of cellulose pads, white powdery fillers (e.g. Kieelgur, Perlite) or liquid chemicals such as wet-strength agents we, with the help of NIR, easy to identify. NIR can also determine physical parameters such as particle size, essential for the filtration behavior. FT-NIR can be used for the quality parameters of the final product. Moisture and permeability can be determined, and with the help of the speed of this NIR method it is possible to correct possible faults quickly in the production process. Waste production can be minimized which is good for both the product profitability and the environment. Further tests have shown that it is also possible to use NIR on-line in the production area, to check the concentrations and the homogeneity of the paper suspension consisting of cellulose fibres, fillers and additives.

  • PDF

부패된 사과로부터 분리된 미생물의 bacterial cellulose 생산특성 (Production of bacterial cellulose by a mircobial strain isolated from rotten apples)

  • Jeong, Jae-Yong;Park, Yeon-Hui;Park, Jung-Gon
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.465-468
    • /
    • 2002
  • 부패한 사과로부터 bacterial cellulose (BC)를 생산할 수 있는 균주를 분리한 후 배양조건에 따른 BC의 생산량을 조사한 결과 BC의 생산량은 진탕배양한 경우가 정치배양한 경우보다 약 1.5배 높았다. BC의 생산량을 높이고자 mutagen으로 UV와 cylcloheximide를 사용함으로써 BC 생산량을 약 3배 증가시킬 수 있었다.. 미생물에 의해 생성된 BC는 종이나 펄프와는 달리 pectin, 납, 유지, 단백질, 무기질 등의 불순물을 함유하지 않는 filter paper와 성질이 유사한 것으로 나타났다.

  • PDF

Effects of Canopy Removal on Cellulose Decomposition and Nitrogen Mineralization in Quercus rubra Stands (임관 제거가 루브라참나무림의 셀룰로오스 분해와 질소 무기화에 미치는 영향)

  • Kim, Choonsig
    • The Korean Journal of Ecology
    • /
    • v.18 no.2
    • /
    • pp.219-230
    • /
    • 1995
  • Although many studies of nutrient cycling in forest ecosystems have reported that clearcutting creates increased organic matter decomposition and nitrogen (N) mineralization in soils, little is known about the change of these factors following various levels of canopy removal. A series of experimental plots with four levels of canopy cover, i.e., clearcut, 25%, 75%, and uncut, was established in northern red oak (Quercus rubra L.) stands in northern Lover Michigan, U.S.A. I examined decomposition of cellulose filter papers and N mineralization using an in situ soil incubation technique in the top 15cm of mineral soil during the second growing season (1992, May-October) following stand manipulation. Mass loss from cellulose filter papers was more rapid in the canopy removal treatments than in the uncut treatment. similarly, net N mineralization was significantly greater in the canopy removal treatments than in the uncut treatment. There was no significant difference in net N mineralization rates among the three levels of canopy removal. Net N mineralization for the growing season was 58 kg/ha for the clearcut, 54 kg/ha for the 25% canopy cover, 51 kg/ha for the 75% canopy cover, and 22 kg/ha for the uncut treatment. These results indicated that even only small amounts of canopy removal (leaving 75% canopy cover) let to substantial increases of cellulose decomposition and the amount of available soil nitrogen.

  • PDF

The degradation characteristics of waste cigarette filter in outdoor (실외에서 발생되는 폐 담배필터의 분해특성)

  • 김주학;윤오섭;이문수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.21 no.2
    • /
    • pp.136-143
    • /
    • 1999
  • This study was conducted to evaluate the degradation characteristics of waste cigarette filters under 0, 5, 10, and 15cm in depth from soil surface by environmental conditions. Weather was the most important factor during degradation of waste cigarette filters in this study. Bulking of cellulose acetate filaments exposed on soil surface was observed after 2 months, but the form of filter was kept up after 12 months. The treated cigarette filters in soil landfill revealed a little different degradation pattern at each soil landfill depth, The sample in 5cm depth of soil was more degraded then other site. A fluffy appearance of cellulose acetate filaments in the control filter rods was also developed more strongly in soil landfill then on soil surface. From the observation of waste cigarette filters by scanning electron microscopy, much degradation of the fiber of waste cigarette filters could be ascertained in soil landfill. The weight of waste cigarette filters under 5cm from soil surface was reduced about 50%, and the tensile strength of the samples in soil surface and under 5cm from soil surface were reduced 66.0% and 92.4%, respectively. The microbial experiment date that the viable cell number in microbial population and cellulolytic microorganisms showed the maximum values under 5cm from soil surface, suggest that microorganisms in soil play an important roll in the degradation of acetate cigarette filters.

  • PDF

Usage of Enzyme Substrate to Protect the Activities of Cellulase, Protease and α-Amylase in Simulations of Monogastric Animal and Avian Sequential Total Tract Digestion

  • Wang, H.T.;Hsu, J.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1164-1173
    • /
    • 2006
  • Cellulase from Aspergillus niger, (${\alpha}$-amylase from Bacillus sp. and protease from Bacillus globigii were used as enzyme sources in this study to examine how their respective substrates protect them in two kinds of simulated gastrointestinal tract digesting processes. Avian total digest tract simulation test showed that filter paper, Avicel and cellulose resulted in 7.7, 6.4 and 7.4 times more activity than of unprotected cellulose, respectively. Protease with addition of casein, gelatin or soybean protein showed no significant protection response. Starch protected amylase to be 2.5 times activity of the unprotected one. Monogastric animal total tract digestion simulation test showed that filter paper, Avicel and cellulose resulted in 5.9, 9.0 and 8.8 times activity of unprotected cellulase, respectively. Casein, gelatin and soybean protein resulted in 1.2, 1.3 and 2.0 times activity of unprotected protease, respectively. Starch did not protect amylase activity in monogastric animal total tract simulation. Protection of mixed enzymes by substrates in two animal total tract simulation tests showed that filter paper in combination with soybean protein resulted in 1.5 times activity of unprotected cellulose, but all substrates tested showed no significant protection effect to protease. Soybean protein and starch added at the same time protected the amylase activity to be two times of the unprotected one. Test of non-purified substrate protection in two animal total digest tract simulation showed that cellulase activity increased as BSA (bovine serum albumin) concentration increased, with the highest activity to be 1.3 times of unprotected enzyme. However, BSA showed no significant protection effect to protease. Amylase activity increased to 1.5 times as BSA added more than 1.5% (w/v). Cellulase activity increased to 1.5 times as soybean hull was added higher than 1.5%. Amylase had a significant protection response only when soybean hull added up to 2%. Protease activity was not protected by soybean hull to any significant extent.

A Study on the Positively Charged Filter for Removing Fine Particles in Water (양전하가 부가된 수처리 필터의 입자제거특성에 관한 연구)

  • Jung, Sung-Hak;Kim, Jong-Won;Kim, Sang-Hee;Jeon, Byung-Heon;Lee, Seung-Gap;Lee, Jae-Keun;Ahn, Young-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.5
    • /
    • pp.454-460
    • /
    • 2012
  • The purpose of the present work is to investigate the removal characteristics of positively charged filters for capturing negatively charged particles such as bacteria and virus in water. In order to reduce the pressure drop and increase the filtration efficiency, the filter media, modified by charge modifier having positive functional groups, is developed and evaluated. Improved liquid filters have been developed with the modified surface charge to capture and adsorb particles by electrokinetic interaction between the filter surface and particles contained in an aqueous liquid. The positively charged filter media is composed of glass fiber, cellulose and poly-ethylenimine resin for positively charging with the variation of volume ratio. The zeta potential value of the positively charged filter is +37.92 mV at the glass fiber and cellulose content ratio of 50 : 50 with resin content of 100%, while that of the PSL test particle is -23.5 mV at pH 7. The removal efficiency of the electro-positively charged filter is 98% for PSL particles of 0.11 ${\mu}m$, while that of the negatively charged filter is 7%. The positively charged filter media showed the potential to be an effective method for removing fine particles from the contaminated water for liquid filtration.

Studies on sterile filters in the preparation of N-13 ammonia injection (N-13 암모니아 주사액 제조 시 멸균필터의 흡착율 차이에 관한 비교 평가)

  • Oh, Chang Bum;Kim, Si Hwal;Cha, Min Jung;Shin, Jin;Ji, Yong Gi;Choi, Sung Ook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.64-68
    • /
    • 2019
  • Purpose In the preparation process for N-13 Ammonia injections, there were radioactive medicines adsorbed on filters remarkably. Hereby, we have compared the adsorption rate and quality test on Millex GS filter and Satorious Minisart filter, both representatively hydrophilic sterilizing filters, also evaluated which filter is more accommodative for N-13 Ammonia injection. Materials and Methods The filters used for sterilization of N-13 Ammonia injections were Millex GS filter($0.22{\mu}m$) mand Satorious Minisart filter ($0.2{\mu}m$), which are generally used to strain aqueous solutions. After the N-13 Ammonia passes through each sterilization filter, the adsorption rate of the filter (n=10) is determined by measuring not only the radioactivity through the filter also the amount of radioactivity remaining in it using a Dose Calibrator. The N-13 Ammonia injections after each filter is tested by the quality control test to conform to the Samsung Medical Center standard. Results The ratio of radioactivity passed through Millex GS indicated $29.0{\pm}17.6%$. Satorious Minisart filters output was $80.9{\pm}3.2%$, respectively. Each ratio of radioactivity adsorbed on the sterile filter was $71.0{\pm}17.6%$ for Millex GS and $19.1{\pm}3.2%$ for the Satorious Minisart filters, respectively. Furthermore, on the ratio of filtered radioactivity, Using Satorious Minisart filter showed about 2.8 times higher than using Millex GS filter. The quality testing of N-13 Ammonia injections through each filter met the Samsung Medical Center standard. Conclusion The Millex GS filter is composed of cellulose acetate and cellulose nitrate, whereas the Satorious Minisart filter if composed only of cellulose acetate. Therefore, the presence of cellulose nitrate in the membrane seems to have made differences. Therefore, the use of Satorious Minisart filter in the preparation of N-13 Ammonia injection solution minimized the loss of radioactive medicines due to filter adsorption, thereby improving the synthesis yield.

Characteristics of Cellulose Aerogel Prepared by Using Aqueous Sodium Hydroxide-urea (Sodium Hydroxide-urea 수용액을 이용하여 제조한 셀룰로오스계 에어로겔의 특성)

  • Kim, Eun-Ji;Kwon, Gu-Joong;Kim, Dae-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.302-309
    • /
    • 2013
  • The highly porous cellulosic aerogels were prepared by freeze-drying method using sodium hydroxide-urea aqueous solution in the process of dissolution, gelation, regeneration and organic solvent substitution. The structural characteristics of porous aerogel were analyzed using scanning electron microscopy and nitrogen adsorption apparatus. As a result, the dissolving pulp was completely dissolved, but filter papers and holocellulose were divided into two layers (dissolved and undissolved parts) in the process of centrifugation. The structure of aerogel from dissolved pulp showed porous pores in the surface and net-shaped network in the inner part. Aerogels from filter paper and holocellulose had the condensed porous network surface and the open-pore nano-fibril network inner structure. Undissolved form of fibers was observed in the aqueous solution of aerogel from holocellulose. The BET value ($S_{BET}$) of aerogel from dissolved pulp was ranged in 260~326 $m^2/g$, and it was decreased with the increase of concentration. Whereas, the $S_{BET}$ value of aerogel from filter paper (198~418 $m^2/g$) was increased with the increase of concentration. The $S_{BET}$ value of aerogel from holocellulose were 137 $m^2/g$ at 2% (w/w) of cellulose, and it was increased to maximum 401 $m^2/g$ at 4% (w/w) of cellulose. Then, it was decreased at 5% (w/w) of cellulose.

Degradation Characteristics of Wood Cellulose by Ruminal Cellulolytic Anaerobic Bacterium Ruminococcus albus F-40 (혐기성 세균 Ruminococcus albus F-40에 의한 목재 cellulose의 분해특성)

  • Kim, Yoon-Soo;Wi, Seung-Gon;Myung, Kyu-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.83-95
    • /
    • 1997
  • The degradation mode of lignocellulose by anaerobic ruminal cellulolytic bacterium Ruminococcus albus F-40 was investigated. Birchwood holocellulose and filter paper were incubated as the sole carbohydrate sources with using the Hungate techniques. After 2 or 4 days of incubation, samples were employed for chemical and electron microscopic evaluations. The degradation rate of cellulosic substrates and the adhesion rate of bacteria to the substrates increased proportionally with the decrease of relative crystallinity of cellulose, indicating the preferential breakdown of amorphous cellulose, by this bacterium. X-ray diffraction analyses and polarized light microscopy showed, however, that crystalline cellulose was also degraded by R. albus. FT-IR spectra indicated that not only cellulose but hemicellulose was also degraded by this bacterium. Electron microscopic investigations showed the protuberant structures on the surface of R. albus. These structures were much more significant when bacterial cells were grown in the media containing insoluble substrates, such as cellulose, indicating clearly that bacterial protuberant structures were induced by the substrates. Protuberant structures extended from the bacterial cells adhered tightly to the substrates and numerous vesicles covered the surface of cellulosic substrates affected. Cellulosome-like structures were distributed on the cellulose matrix. Electron microscopic works showed that diverse surface organells of R. albus were involved in the degradation of cellulosic materials. SEM examinations showed the breakdown of cellulose by R. albus was proceeded by severeal routes : short fiber formation, defibrillation and destrafication of cellulose microfibril.

  • PDF

Photodegradation of Cellulosics(Part II) - Chemical Properties of Irradiated Cotton - (Cellulose의 광분해에 관한 연구(II) - 광조사된 면섬유의 화학적 성질을 중심으로 -)

  • 전경숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.1
    • /
    • pp.15-22
    • /
    • 1994
  • The formation of carbonyl group was dominant to other functional groups. Concentrations of both carboxyl and peroxide groups were found to rapidly reach low steady state values that increased slightly with increa-sing temperature and relatice humidity. Since the deg-radation of cellulose samples was in the initial stage and the conversion of glycosidic bonds and hydroxyl groups were very small, it was found that changes in the physical and chemical properties could be fitted to a first-order reaction model.

  • PDF