• 제목/요약/키워드: cellulose fabric

검색결과 85건 처리시간 0.025초

Cellulose계 섬유의 새로운 전망

  • 조환
    • 한국염색가공학회지
    • /
    • 제6권2호
    • /
    • pp.63-70
    • /
    • 1994
  • 최근, Courtaulds Fiber Ltd.사에 의해 개발된, 새로운 용제방사(瑢劑紡絲) cellulose fiber인 Tencel에 대한 관심이 고조되고 있다. 이 글에서는, 먼저 Tencel의 고기능 특성을 cellulose섬유의 구조적 성질과 관련지어 언급코져 한다. 다음으로, 중공섬유막(hollow fiber membranes), sponge, 부직포와 bacterial cellulose, 그리고, 그 들 cellulose로부터 유래된 새로운 상품과 그 응용의 광범위한 분야를 서술하고져 한다. 그 외에, cellulose fibers와 fabric에 대한 가능성 후처리기술들의 최근의 동향도 기술하고져 한다. 끝으로, 생분해성 plastic과 super섬유로서의 cellulose의 특성, 그리고 장래 그들의 기술적 전망도 부언하고져 한다.

  • PDF

액상 또는 분말망초 Type에 따른 Cellulose 편성물의 반응성염료에 대한 염색성과 견뢰도 연구 (The Effect of Sodium Sulfate in Liquid or Solid Form on Reactive Dyeing and Fastness Properties of Cellulose Knitted Fabric)

  • 김미리;이혜정;이정진
    • 한국염색가공학회지
    • /
    • 제22권4호
    • /
    • pp.341-348
    • /
    • 2010
  • Sodium sulfate is commonly added in reactive dyebath in order to increase substantivity of the reactive dye to cellulose fiber by reducing repulsion between anionic dye and fiber. While sodium sulfate is mostly used in solid form, it is inconvenient to dissolve a large amount of powder sodium sulfate. Furthermore, if there is undissolved salt in dyebath it might cause unlevel dyeing. In this study, sodium sulfate in liquid or solid form was used in dyeing of cellulose fabric with reactive dyes of three primary color and the effect of type or amount of sodium sulfate on dyeing and fastness properties was investigated. When the amount of sodium sulfate rose to 30-50 g/l, K/S value of the dyed fabric markedly increased; further rise in sodium sulfate concentration resulted in slow increase in K/S value. For light color, optimum amount was about 30 g/l in solid form and 50-100 g/l in liquid form while, for medium to deep color, it was 50 g/l and 100-150 g/l in solid and liquid form, respectively. When using each optimum amount of salt in solid or liquid form for medium color, shape of dyeing curve as well as exhaustion was similar to each other. On the whole, similar color fastness results were obtained regardless of type or amount of sodium sulfate.

고점도 지류 및 섬유 문화재의 점도 측정 개선 방법 연구 (Improvement method for viscosity measurement of high viscosity paper and fabric cultural heritages)

  • 김영희;홍진영;조창욱;김수지;이정민;서민석;최경화
    • 보존과학연구
    • /
    • 통권34호
    • /
    • pp.20-29
    • /
    • 2013
  • 지류, 섬유, 목재와 같은 유기질 문화재는 주요 화학성분으로서 셀룰로오스로 구성되어 있다. 셀룰로오스는 글루코오스가 분자내 또는 분자간 수소결합으로 고분자 결정성 구조를 이루고 있다. 특히 셀룰로오스의 중합도는 종이나 섬유의 강도와 밀접한 관련이 있으며, 종이나 섬유에 있어서 열화의 진행정도나 보존성을 나타내는 지표로써 사용된다. 일반적으로 이러한 셀룰로오스의 분자량을 측정하는 방법으로 TAPPI 표준방법인 CED (cupriethylene diamine)용액을 이용한 점도측정법을 많이 사용하고 있다. 목재 섬유로 제조된 종이의 경우 TAPPI 표준 방법 T230법에 의거하여 셀룰로오스 점도를 측정한다. 그러나 우리나라 종이나 섬유의 주요 원료인 닥나무 인피섬유, 저마, 면 등은 목재 셀룰로오스 섬유에 비해 분자량이 크고 중합도가 높아 현재까지 주로 사용되던 T230법으로는 정확한 점도 측정이 어렵다. 따라서 본 연구에서는 고점도 측정방법인 TAPPI 표준 방법 T254법에 의거하여 저농도 CED 용액으로 섬유 깊숙이 용액을 침투시켜 해리시킨 뒤 고농도의 CED 용액으로 완전히 용해시키는 방법을 이용하여 한지의 점도를 측정하였고, 열화시편에 적용하여 종이와 섬유의 열화에 의한 손상정도를 측정하였다.

  • PDF

키토산 처리포의 괴화 천연염색에 관한 연구(I) (The Effect of Chitosan Treatment of Fabrics on the Natural Dyeing using Japanese Pagoda Tree (I))

  • 전동원;김종준;신혜선
    • 복식문화연구
    • /
    • 제11권3호
    • /
    • pp.423-430
    • /
    • 2003
  • Cotton fabric md nylon fabric were chosen as base fabric specimens for dyeing using Japanese pagoda tree colorants through chitosan, treatment. With the chitosan treatment, the dye-uptake of the treated fabric increased. This treatment is also expected to be effective in terms of environment-friendliness. The effect of the dyeing methods, mordanting or non-mordanting, and chitosan treatment on the dye-uptake and air permeability of the treated fabrics was investigated. In case of cotton fabric, Al mordanted dyeing resulted in higher dye-uptake through the chitosan treatment. Therefore, the chitosan treatment is effective in this case. Japanese pagoda tree seems to have direct affinity for nylon fabric without the mordanting treatment. In case of cotton fabric, it seems that the cellulose molecules, colorants, and the chitosan make a complex, thereby reducing the air permeability. In case of nylon fabric, due to the fact the Japanese pagoda tree colorant molecules form direct physical bonding with the nylon molecules, it seems that there is not much of air permeability reduction.

  • PDF

액체암모니아, 수산화나트륨, 수산화나트륨/액체암모니아 처리한 면의 미세구조 및 물성 (Fine Structure and Physical Properties of Cotton Fibers and their Fabrics Treated with Liquid Ammonia, NaOH, and NaOH/Liquid Ammonia)

  • 배소영;이문철;김홍성;이영희;김경환
    • 한국염색가공학회지
    • /
    • 제6권2호
    • /
    • pp.47-54
    • /
    • 1994
  • Cotton fiber, NaOH-mercerized cotton fiber, cotton fabric, and NaOH-mercerized cotton fabric have been treated by liquid ammonia at -33.4$^{\circ}C$. The fine structures, bending properties, tensile strengthes, shrinkages for laundering, and wrinkle recoveries were studied. The treatment of cottons with liquid ammonia brought about the transition of crystal lattice ; transforming cellulose I crystal of original cotton to cellulose I and III crystal, and cellulose II crystal of mercerized cotton to cellulose II and III crystals. The degree of crystallinities were decreased in the order of liquid ammonia>NaOH/liquid ammonia>NaOH-treated cotton. However moisture regain and water absorbency for liquid ammonia-treated cotton were lower than that of NaOH-treated cotton because of a difference in swelling actions of the agents. It seems caused by intermicrofibrillar pores produced in swelling processes. The bending rigidity and bending hysteresis were decreased remarkly by liquid ammonia treatment. Therefore softness and dimensional stability were improved. The liquid amminia and NaOH/liquid ammonia-treated cottons moreover show excellent properties in tensile strength, anti-shrinkage for laundering, and wrinkle recovery.

  • PDF

폴리에틸렌글리콜의 분자량에 따른 셀룰로스에서의 확산 거동 (The Effect of the Molecular Weight of Poly(ethylene glycol) on Diffusion through Cellulose)

  • 윤기종;우종형;서영삼
    • 한국염색가공학회지
    • /
    • 제16권1호
    • /
    • pp.48-52
    • /
    • 2004
  • Diffusion/penetration rates of finishing agents are not a major criterion in the design of low molecular weight finishing agents. However, in the case of polymeric finishing agents, high molecular weights result in large hydrodynamic volumes and diffusion/penetration of the finishing agent into the substrate may become a critical factor in the design of textile finishing agents. Thus the effect of the molecular weight of a model compound, polyethylene glycol, on its diffusion through a cellulose membrane or cotton fabric is studied. Diffusion experiments of polyethylene glycol of molecular weight 400, 1000, 2000, 4600, 8000, and 10000 through cellulose membrane or fabric was carried out in a glass U-tube diffusion apparatus and the half penetration times and the penetration coefficients were determined. Both the half penetration times and the penetration coefficients exhibited a significant change between molecular weight 2000 and 2500 as the molecular weight of polyethylene glycol increased, suggesting that there is a critical molecular weight above which diffusion/penetration becomes difficult. Based on this study on a model compound, it is suggested that polymeric textile finishing agents can be expected to exhibit similar behavior.

Flame Retardancy of Cellulose Fabrics Treated with 3-(Hydroxyphenyl Phosphinyl) Propanoic Acid

  • Zhang, Lianping;Kim, Sam-Soo;Lee, Jae-Woong
    • 한국염색가공학회지
    • /
    • 제20권5호
    • /
    • pp.1-6
    • /
    • 2008
  • 3-(Hydroxyphenyl phosphinyl) propanoic acid (HPPA) has been one of the most commonly used durable flame retardant agents for polyethylene terephthalate (PET) for many years. We intended to explore the application of HPPA to cellulose fabrics as formaldehyde-free phosphorus based flame retardants (FRs) through green chemistry process. The flame retardancy of the flame-retardant treated cellulose fabrics were characterized by using inductively coupled plasma spectroscopy (ICP) and limiting oxygen index (LOI). Structural changes of the treated cellulose fabrics were carried out by thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. To enhance the flame retardancy of HPPA treated cellulose fibers, glycerol polyglycidyl ether (GPE), a crosslinking agent was employed. Both HPPA and GPE treated cotton fabric imparted an LOI value over 26.

키토산처리에 의한 텐셀 직물의 개질기능화(I) - 물성 변화를 중심으로 - (Modification of Tencel Fabric Treated with Chitosan ( I ) - Change of Physical Properties -)

  • 배현숙;육은영
    • 한국염색가공학회지
    • /
    • 제14권1호
    • /
    • pp.18-26
    • /
    • 2002
  • Chitosan has reactive amino and hydroxyl groups which can be used to chemically alter its properties under the mild reaction conditions. Thus the cationization of Tencel with Chitosan is effective to modify the fabric. To investigate the modified properties of Tencel fabric, the tests were performed under the several finishing process with enzyme/glutaraldehyde/softener. The internal structure of Tencel which has the structure of cellulose II wasn't changed by enzyme, chitosan and crosslinking agent treatment and the thermal stability was improved by chitosan and crosslinking agent treatment. Wrinkle recovery angle under the dry condition increased highly until $0.1\textrm{mol}/\ell$ of glutaraldehyde concentration, and then decreased. Tensile strength of modified Tencel fabric decreased with increasing of weight loss, but it was improved more or less by chitosan, crosslinking agent and softener. Moisture regain was improved by enzyme and chitosan treatment. And antibacterial activity showed nearly 100% on Tencel fabric treated with 0.5% chitosan and adsorption of metal ion increased with increasing of chitosan concentration.

직접 염료 Direct Sky Blue 5B(C. I. Direct Blue 15)의 면에 대한 레독스계에서의 염색 (Dyeing of Cellulose Fabric with C. I. Direct Blue 15 by Redox System)

  • 김광오;김정구;이영희;김경환
    • 한국염색가공학회지
    • /
    • 제5권3호
    • /
    • pp.173-181
    • /
    • 1993
  • Dyeing cotton fabric with direct dye (C. I. Direct Blue 15) by redox sytem of ammonium persulfate as an oxidant and glucose as reductant was studied. It was found that covalent bond between dye and cellulose molecule can be formed by free radical produced by the redox system in the dye bath, which enhanced significantly the color strength. The retained color strength after DMF extraction was much better in the presence than in the absence of the redox sytem. The optimum dyeing condition was 0.028 mol/$\ell$(APS/Glucose each) of redox concentration, 65$^{\circle}C$ of dyeing temperature and 60min of dyeing time. The color variation on the dyed sample had not been observed as a result of fixed ${\lambda}_max$.

  • PDF

아민기를 도입한 면직물의 염색성에 관한 연구 (A Study on the Dyeability of the Aminized Cotton Fabrics)

  • 최연주;유효선
    • 한국의류학회지
    • /
    • 제19권1호
    • /
    • pp.51-56
    • /
    • 1995
  • Cotton fabric was treated with acrylonitrile in t-butyl alcohol and then aminized by reduction of the resultant cyanoethyl cellulose with LiAIH4, under various temperatures and times. Aminized cotton fabric toras dyed with acid and reactive dye. Dyeability as to temperatures, pH, and color fastness were compared to the amiRe group content of treated cotton fabrics. The results of this study were as follow: 1. D.S of cyanoethyl cellulose has been increased by increasing treating temperatures and times. Maximum D.S of cyanoethyl cellulose was 1.45. By SEM and the tensile strength, the damage of the treated cotton was not observed. 2. Since aminized cotton has greater affinity on acid dye than untreated cotton, dyeability increased with the increase of amino group content, and the lower pH, $60^{\circ}C$. 3. Since amino group in aminized cotton changes surface charge of cotton, dyeability for reactive dye increased by increasing the amino group content. Optimum dyeability was obtained at pH 5-7, $40^{\circ}C$. And dyeability of the amine treated cotton increased with the NaCl conc. 4. Color fastness to washing & light of the amine treated cotton was very low except for the wash fastness of the reactive dye.

  • PDF