• 제목/요약/키워드: cellulose biosynthesis

검색결과 32건 처리시간 0.02초

Cellulose 생합성 세균의 분리 및 특성 (Characterization and Isolation of Bacteria Producing Cellulose)

  • 이승진;유주순;정수열;최용락
    • Applied Biological Chemistry
    • /
    • 제40권2호
    • /
    • pp.101-106
    • /
    • 1997
  • 발효시켜서 만드는 감식초에서 시료를 채취하여 배양하고, pellicle을 형성하는 single colony를 cellulose 생합성균으로 분리하였다. 분리된 균주는 형태적 특성, 알콜의 재산화 등의 생리, 생화학적 특성 등에 의하여 Acetobacter속으로 분류되었으며, Acetobacter CBI-2라고 명명하였다. Acetobacter CBI-2는 정치배양 시에 기존의 생합성 균주로 알려진 Acetobacter xylinum과 대등한 cellulose 생합성 능력을 나타내었다. Acetobacter CBI-2이 생성한 고분자물질의 분해산물을 TLC법으로 확인한 결과 기존 cellulose의 것과 일치하였다. Acetobacter CBI-2에서 genomic DNA를 분리 정제하여 cel A 영역을 probe로하여 hybridization 시킨 결과, 상동성을 나타내어 분리 균주에는 cellulose 생합성 관련 유전자가 존재함을 나타내었다.

  • PDF

Tension Wood as a Model System to Explore the Carbon Partitioning between Lignin and Cellulose Biosynthesis in Woody Plants

  • Kwon, Mi
    • Journal of Applied Biological Chemistry
    • /
    • 제51권3호
    • /
    • pp.83-87
    • /
    • 2008
  • Tension wood, a specialized tissue developed in the upper side of the leaning stem and drooping branches of angiosperm, is an attractive experimental system attractive for exploring the development and the biochemical pathways of the secondary cell wall formation, as well as the control mechanism of the carbon flux into lignin, cellulose, and hemicellulose. However, the mechanism underlying the induction and the development of the tension wood is largely unknown. Recently, several researchers suggested the possible roles of the plant growth hormones including auxin, gibberellin, and ethylene mainly based on the expression pattern of the genes in this specialized tissue. In addition, expressed sequence tag of Poplar and Eucalyptus provide global view of the genetic control underlying the tension wood formation. However, the roles of the majority of the identified genes have not yet been clearly elucidated. The present review summarized current knowledge on the biosynthesis of tension wood to provide a brief synopsis of the molecular mechanism underlying the development of the tension wood.

Biosynthesis of cellulose

  • Brown, R.Malcolm
    • 한국동물학회:학술대회논문집
    • /
    • 한국동물학회 1994년도 한국생물과학협회 학술발표대회
    • /
    • pp.63-63
    • /
    • 1994
  • No Abstract, See Full Text

  • PDF

Escherichia coil B의 Glycogen Synthetase반응에 의한 글리코겐 생합성기작 (Mechanism of Glycogen Biosynthesis by Glycogen Synthetase from Escherichia coil B)

  • 양지영
    • 한국식품영양과학회지
    • /
    • 제27권6호
    • /
    • pp.1173-1176
    • /
    • 1998
  • Glycogen synthetase[EC 2.4.1.21] in E. coli B was isolated and purified by sonication, ultracentri fugation, DEAE cellulose chromatography and gel chromatography. In the case of using glycogen or maltotriose as a primer in the enzyme reaction, 64% and 23.7% of labelled ADP glucose were incorporated into primer, respectively. 8.1% of labelled ADP glucose was polymerized into glycogen in enzymatic reaction without a primer.

  • PDF

Overproduction of Cellulose in Acetobacter xylinum KCCM 10100 Defective in GDP-Mannosyltransferase

  • Park Sang-Tae;Kim Eung-Bin;Kim Young-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.961-964
    • /
    • 2006
  • GDP-mannosyltransferase (GMT) is an enzyme responsible for the addition of a mannose to glucose ($\alpha$[1$\rightarrow$3]) during biosynthesis of the water-soluble branched polysaccharide acetan in Acefobacter species. In an effort to obtain a cellulose-overproducing bacterium, a mutant defective in GMT of Acetobacter xylinum KCCM 10100 was constructed by single crossover homologous recombination using part of the aceA gene encoding GMT amplified by polymerase chain reaction. The GMT-disrupted mutant produced 23% more cellulose, but 16% less water-soluble polysaccharide than those of the wild-type strain. Analysis of the sugar composition by gel permeation chromatography revealed that water-soluble polysaccharides produced by the GMT-defective mutant contained no mannose molecule.

From the Photosynthesis to Hormone Biosynthesis in Plants

  • Hyong Woo Choi
    • The Plant Pathology Journal
    • /
    • 제40권2호
    • /
    • pp.99-105
    • /
    • 2024
  • Land plants produce glucose (C6H12O2) through photosynthesis by utilizing carbon dioxide (CO2), water (H2O), and light energy. Glucose can be stored in various polysaccharide forms for later use (e.g., sucrose in fruit, amylose in plastids), used to create cellulose, the primary structural component of cell walls, and immediately metabolized to generate cellular energy, adenosine triphosphate, through a series of respiratory pathways including glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation. Additionally, plants must metabolize glucose into amino acids, nucleotides, and various plant hormones, which are crucial for regulating many aspects of plant physiology. This review will summarize the biosynthesis of different plant hormones, such as auxin, salicylic acid, gibberellins, cytokinins, ethylene, and abscisic acid, in relation to glucose metabolism.

Aspergillus nidulans 의 섬유질 분해효소계 생합성에 미치는 기질의 공조효과 (Synergistic Effect of Substrates on the Biosynthesis of Cellulase and Xylanase Complexes from Aspergillus nidulans)

  • 이정애;맹진수;맹필재;이영하
    • 한국균학회지
    • /
    • 제17권2호
    • /
    • pp.57-65
    • /
    • 1989
  • Cellulose와 hemicellulose의 단일 유도기질과 그 혼합물을 이용하여 Aspergillus nidulans의 섬유질 분해효소계의 유도 특이성을 조사하였다. 섬유질 분해효소계의 생합성에 있어서 최적의 유도기질이 endoglucanase의 경우엔 carboxymethylcellulose, ${\beta}-glucosidase$는 cellobiose, 그리고 endoxylanase와 ${\beta}-xylosidase$는 xylan으로 알려져 왔으나 이들 단일기질보다 기질들의 혼합물 특히 CMC-xylan과 CMC-xylan-laminarin of cellulase와 xylanase complexes의 생합성을 증가시키는데 매우 효과적인 것으로 나타났다. 이것은 각각의 유도기질에 따른 endoglucanase와 ${\beta}-glucosidase$ 그리고 endoxylanase의 components 양상 및 비교 활성도 변화에 기인하는 것으로 polyacrylamide gel 전기영동과 활성염색의 결과에서도 나타났다. 섬유소 분해효소계 생합성을 위한 유도물질의 이와 같은 공조효과는 Aspergillus nidulans에서 Cellulose와 xylanase systems의 생합성 조절이 유도물질에 의한 효소의 유도 수준에서 상호 관련되고 있음을 시사한다.

  • PDF

Enhanced Production of Bacterial Cellulose in Komagataeibacter xylinus Via Tuning of Biosynthesis Genes with Synthetic RBS

  • Hur, Dong Hoon;Choi, Woo Sung;Kim, Tae Yong;Lee, Sang Yup;Park, Jin Hwan;Jeong, Ki Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권9호
    • /
    • pp.1430-1435
    • /
    • 2020
  • Bacterial cellulose (BC) has outstanding physical and chemical properties, including high crystallinity, moisture retention, and tensile strength. Currently, the major producer of BC is Komagataeibacter xylinus. However, due to limited tools of expression, this host is difficult to engineer metabolically to improve BC productivity. In this study, a regulated expression system for K. xylinus with synthetic ribosome binding site (RBS) was developed and used to engineer a BC biosynthesis pathway. A synthetic RBS library was constructed using green fluorescent protein (GFP) as a reporter, and three synthetic RBSs (R4, R15, and R6) with different strengths were successfully isolated by fluorescence-activated cell sorting (FACS). Using synthetic RBS, we optimized the expression of three homologous genes responsible for BC production, pgm, galU, and ndp, and thereby greatly increased it under both static and shaking culture conditions. The final titer of BC under static and shaking conditions was 5.28 and 3.67 g/l, respectively. Our findings demonstrate that reinforced metabolic flux towards BC through quantitative gene expression represents a practical strategy for the improvement of BC productivity.