• Title/Summary/Keyword: cellular structures

Search Result 345, Processing Time 0.027 seconds

3-D Numerical Simulation of Open-Channel Flows over Smooth-Rough Bed Strips (매끄러운 하상-거친 하상의 횡방향 연속구조를 갖는 개수로 흐름의 3차원 수치모의)

  • Choi, Sung-Uk;Park, Moonhyeong;Kang, Hyeongsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.573-581
    • /
    • 2006
  • This paper presents a turbulence modeling of the open-channel flows over smooth-rough bed strips. A Reynolds stress model is used for the turbulence closure. The simulated mean flow and turbulence structures are compared with the previously reported experimental data. Comparisons reveal that the developed Reynolds stress model successfully predicts the mean flow and turbulence structures of open-channel flows over smooth-rough bed strips. The computed flow vectors show cellular secondary currents, of which the upflow occurs over the smooth bed strip and the downflow over the rough bed strip. It is found that the cellular secondary currents affect the mean flow and turbulence structure. A budget analysis of the streamwise vorticity equation is also carried out to investigate the mechanism by which the secondary currents are generated.

Oligomeric Structures Determine the Biochemical Characteristics of Human Nucleoside Diphosphate Kinases

  • Kim, Sun-Young;Song, Eun-Joo;Chang, Keun-Hye;Kim, Eun-Hee;Chae, Suhn-Kee;Lee, Han-Soo;Lee, Kong-Joo
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.355-364
    • /
    • 2001
  • Major human Nucleoside diphosphate kinases (NDPKs) exist as hetero-oligomers, consisting of NDPK-A and NDPK-B, rather than homo-oligomer. To investigate their biological function depending on the oligomeric structure in vivo, we characterized the biochemical properties of cellular NDPK. Cellular NDPKs, which are made up of a unique combination of isoforms, were purified from human erythrocyte and placenta. We found that cellular NDPK and recombinant isoforms NDPKs have their own distinct biochemical properties in autophosphorylation, stability toward heat or urea, and DNA binding. Cellular NDPK was found to have unique characteristics rather than the expected additive properties of recombinant isoforms. The mutations in the dimeric interface of NDPK-B (R34G, N69H or K135L) caused defective DNA binding and simultaneously reduced the enzymatic stability These results suggest that the oligomeric interaction could play a major role in the stability of catalytic domain and might be related to the regulation of various cellular functions of NDPK.

  • PDF

Design and Construction of Cellular Foundation Mattress as Foundations of Building Structures (건축구조물 기초로서 셀룰러 기초 매트리스의 설계 및 시공)

  • Jeong Young Lee;Jong Gon Ko;Nguyen Ngoc Son;Jae Hak Park;Doo Kie Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.25-37
    • /
    • 2023
  • Cellular Foundation Mattress made of new materials such as high density polyethylene, are not currently use for the foundation of small and medium-sized buildings in Korea. Therefore, they need to be developed and verified based on domestic ground and field conditions. This study presents the basic design and construction method of Cellular Foundation Mattress. Since the foundation reinforcement effect of Cellular Foundation Mattress should be evaluated and verified for soft ground, a performance comparison evaluation was conducted using the Soilbag method, which is commonly used for the foundation of small and medium-sized buildings in Korea. After the mattress reinforcement, the settlement amount decreased by 38.4% compared to the original ground and the bearing capacity increased by 159%, confirming the same ground reinforcement effect and ground stability as the Soilbag method.

Measurement of Secondary Electron Emission Coefficient and Bimolecular Valence Band Energy Structure of Erythrocyte with and Without Bioplasma Treatment

  • Lee, Jin-Young;Baik, Guyon;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.483-483
    • /
    • 2012
  • Recently, nonthermal bioplasma has been attracted by researchers due to their potentials to modulate cellular functions resulting in changes of biomolecular electron band structures as well as cell morphologies. We have investigated the secondary electron emission characteristics from the surface of the erythrocyte, i.e., red blood cell (RBC) with and without the nonthermal bioplasma treatment in morphological and biomolecular aspects. The morphologies have been controlled by osmotic pressure and biomolecular structures were changed by well known reactive oxygen species. Ion-induced secondary electron emission coefficient have been measured by using gamma-focused ion beam (${\gamma}$-FIB) system, based on the quantum mechanical Auger neutralization theory. Our result suggests that the nonthermal bioplasma treatment on biological cells could result in change of the secondary electron emission coefficient characterizing the biomolecular valence band electron energy structures caused by the cell morphologies as well as its surface charge distributions.

  • PDF

Potential of Cells and Cytokines/Chemokines to Regulate Tertiary Lymphoid Structures in Human Diseases

  • Feifeng Jing;Eun Young Choi
    • IMMUNE NETWORK
    • /
    • v.16 no.5
    • /
    • pp.271-280
    • /
    • 2016
  • Tertiary lymphoid structures (TLS) are ectopic lymphoid tissues involved in chronic inflammation, autoimmune diseases, transplant rejection and cancer. They exhibit almost all the characteristics of secondary lymphoid organs (SLO), which are associated with adaptive immune responses; as such, they contain organized B-cell follicles with germinal centers, distinct areas containing T cells and dendritic cells, high endothelial venules, and lymphatics. In this review, we briefly describe the formation of SLO, and describe the cellular subsets and molecular cues involved in the formation and maintenance of TLS. Finally, we discuss the associations of TLS with human diseases, especially autoimmune diseases, and the potential for therapeutic targeting.

Mechanism of Formation of Three Dimensional Structures of Particles in a Liquid Crystal

  • West, John L.;Zhang, Ke;Liao, Guangxun;Reznikov, Yuri;Andrienko, Denis;Glushchenko, Anatoliy V.
    • Journal of Information Display
    • /
    • v.3 no.3
    • /
    • pp.17-23
    • /
    • 2002
  • In this work we report methods of formation of three-dimensional structures of particles in a liquid crystal host. We found that, under the appropriate conditions, the particles are captured and dragged by the moving isotropic/nematic front during the phase transition process. This movement of the particles can be enhanced significantly or suppressed drastically with the influence of an electric field and/or with changing the conditions of the phase transition, such as the rate of cooling. As a result, a wide variety of particle structures can be obtained ranging from a fine-grained cellular structure to stripes of varying periods to a course-grained "root" structures. Changing the properties of the materials, such as the size and density of the particles and the surface anchoring of the liquid crystal at the particle surface, can also be used to control the morphology of the three-dimensional particle network and adjust the physical properties of the resulting dispersions. These particle structures may be used to affect the performance of LCD's much as polymers have been used in the past.

Fibrobacter succinogenes, a Dominant Fibrolytic Ruminal Bacterium: Transition to the Post Genomic Era

  • Jun, H.S.;Qi, M.;Ha, J.K.;Forsberg, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.802-810
    • /
    • 2007
  • Fibrobacter succinogenes, a Gram-negative, anaerobic ruminal bacterium is a major fibre digesting species in the rumen. It intensively degrades plant cell walls by an erosion type of mechanism, burrowing its way through the complex matrix of cellulose and hemicellulose with the release of digestible and undigested cell wall fragments. The enzymes involved in this process include a combination of glucanases, xylanases, arabinofuranosidase(s) and esterases. The genome of the bacterium has been sequenced and this has revealed in excess of 100 putative glycosyl hydrolase, pectate lyase and carbohydrate esterase genes, which is greater than the numbers reported present in other major cellulolytic organisms for which genomes have been sequenced. Modelling of the amino acid sequences of two glycanases, CedA and EGB, by reference to crystallized homologs has enabled prediction of the major features of their tertiary structures. Two dimensional gel electrophoresis in conjunction with mass spectroscopy has permitted the documentation of proteins over expressed in F. succinogenes grown on cellulose, and analysis of the cell surfaces of mutant strains unable to bind to cellulose has enabled the identification of candidate proteins with roles in adhesion to the plant cell wall substrate, the precursor to cellulose biodegradation.

A Study on the Joining of Different Al Alloys by Centrifugal Casting (원심주조를 이용한 2종 알루미늄의 접합에 대한 연구)

  • Jang, Young-Soo;Lee, Moon-Hyoung;Moon, Jun-Young;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.27 no.6
    • /
    • pp.237-242
    • /
    • 2007
  • To improve the quality of the product and the cost efficiency, the joining of A356 alloy to an Al-18wt%Si alloys has been performed by centrifugal casting. The influence of the mold preheating temperature, the pouring temperature and the rotational velocity of the mold on the microstructures of the shell in the centrifugal casting was investigated using the experimental and simulation methods. In the present study, the cellular automaton (CA) technique and the finite volume method (FVM) were adopted to simulate the evolution of the macro structures and to calculate the temperature profiles, respectively. The evolution of the microstructures was also simulated using a modified cellular automaton (MCA) model. The optimal rotational speed of the mold for obtaining the sound shape of the shell was estimated experimentally to be over 1200 rpm. For the uniform microstructure, the outer shell needs to be cast with higher preheated mold temperature and lower pouring temperature, and the melt was poured at lower temperature in the inner shell. In order to obtain the sound shape of the joining, the different materials were poured simultaneously.

Transmission Capacity Analysis for Cellular Systems Using Antenna Arrays and Wireline Relay Stations (안테나 어레이와 유선 Relay Station을 활용한 셀룰러 시스템의 전송 용량 분석)

  • Kim, Yu-Sin;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.689-695
    • /
    • 2007
  • Wireline relay stations(RS's) are connected to cellular base stations(BS's) via radio-over-fiber(RoF) to enhance system capacity and to reduce shadow areas. Unlike wireless multi-hop systems, BS-to-RS signaling is transmitted out-of-band, thus reducing the effect of interference caused by frequency reuse. In this paper, antenna arrays used in addition to the wireline RS's are considered to evaluate the transmission capacity gain and performance variations according to the may structures. In particular, RS locations to maximize the gain, may distribution patterns for a given number of antenna elements, performance enhancement for a varying number of elements are experimentally determined to suggest a proper utilization of antenna ways in conjunction with wireline RS's.

Microstructural Features of Al Alloy 7N01 Welded by $CO_2$ Laser - Microsturctural Features of Full Penetration Joints - ($CO_2$ 레이저 용접한 7N01 Al합금의 미세조직 특징(I) - 완전용입 용접부의 미세조직 -)

  • 윤재정;강정윤;김인배;김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.429-436
    • /
    • 2001
  • The effect of welding condition on the microstructures of the weld metal in A7N01 welded by $CO_2$ laser was investigated. The number of ripples was increased with decreasing power and increasing welding speed. In the bead without ripple lines, the subgrain microstructures distribution from the fusion line toward the center of the bead were in the order of cellular, dendritic and equiaxed dendrite. However, in the bead with ripple lines, cellular and dendritic were formed between the fusion boundary and the ripple line. Inaddition, those structures were also observed between the ripple line. Equiaxed dendrites were formed only at the center line region. Cellular and dendritics formed near the ripple line were larger than those formed near the fusion boundary. The cooling rates estimated by the dendrite arm spacing were in the range of 200 to 1150oC/s. Cooling rate was increased with decreasing the power and increasing the welding speed. Mg and Zn segregated at the boundaries of cellulars and dendritics, Mg was segregated more than Zn. The segregation of Mg and Zn decreased with increasing cooling rate. Hardness of the weld metal was lower than that of the base metal in all welding conditions and increased as the cooling rate increased.

  • PDF