• Title/Summary/Keyword: cellular structures

Search Result 345, Processing Time 0.028 seconds

Anti-metastatic Effects on B16F10 Melanoma Cells of Extracts and Two Prenylated Xanthones Isolated from Maclura amboinensis Bl. Roots

  • Siripong, Pongpun;Rassamee, Kitiya;Piyaviriyakul, Suratsawadee;Yahuafai, Jantana;Kanokmedhakul, Kwanjai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3519-3528
    • /
    • 2012
  • Inhibitory effects of Maclura amboinenesis Bl, one plant used traditionally for the treatment of cancers, on metastatic potential of highly metastatic B16F10 melanoma cells were investigated in vitro. Cell proliferation was assessed using the MTT colorimetric assay. Details of metastatic capabilities including invasion, migration and adhesion of B16F10 melanoma cells were examined by Boyden Chamber invasion and migration, scratch motility and cell attachment assays, respectively. The results demonstrated that n-hexane and chloroform extracts exhibited potent anti-proliferative effects (p<0.01), whereas the methanol and aqueous extracts had less pronounced effects after 24 h exposure. Bioactivity-guided chromatographic fractionation of both active n-hexane and chloroform extracts led to the isolation of two main prenylated xanthones and characterization as macluraxanthone and gerontoxanthone-I, respectively, their structures being identified by comparison with the spectral data. Interestingly, both exhibited potent effective effects. At non-toxic effective doses, n-hexane and chloroform extracts (10 and $30{\mu}g/ml$) as well as macluraxanthone and gerontoxanthone-I (3 and $10{\mu}M$) significantly inhibited B16F10 cell invasion, to a greater extent than $10{\mu}m$ doxorubicin, while reducing migration of cancer cells without cellular cytotoxicity. Moreover, exposure of B16F10 melanoma cells to high concentrations of chloroform ($30{\mu}g/ml$) and geratoxanthone-I ($20{\mu}M$) for 24 h resulted in delayed adhesion and retarded colonization. As insights into mechanisms of action, typical morphological changes of apoptotic cells e.g. membrane blebbing, chromatin condensation, nuclear fragmentation, apoptotic bodies and loss of adhesion as well as cell cycle arrest in the G1 phase with increase of sub-G1 cell proportions, detected by Hoechst 33342 staining and flow cytometry were observed, suggesting DNA damage and subsequent apoptotic cell death. Taken together, our findings indicate for the first time that active n-hexane and chloroform extracts as well as macluraxanthone and gerontoxanthone-I isolated from Maclura amboinensis Bl. roots affect multistep of cancer metastasis processes including proliferation, adhesion, invasion and migration, possibly through induction of apoptosis of highly metastatic B16F10 melanoma cells. Based on these data, M. amboinensis Bl. represents a potential candidate novel chemopreventive and/or chemotherapeutic agent. Additionally, they also support its ethno-medicinal usage for cancer prevention and/or chemotherapy.

Immunohistochemical Diagnosis of Renal Pelvis Transitional Cell Carcinoma in a Dog (개의 신우 이행상피암종의 면역조직화학적 진단)

  • Yang, Hyoung-Seok;Kang, Sang-Chul;Kim, Jae-Hoon
    • Journal of Veterinary Clinics
    • /
    • v.30 no.4
    • /
    • pp.292-295
    • /
    • 2013
  • A 9-year-old, male, Doberman pinscher dog with 5-month history of intermittent hematuria, vomiting and glucosuria was referred to local animal hospital. Abdominal ultrasonography showed an irregular and hyperechoic mass in the renal medulla of the enlarged left kidney. Grossly atrophied renal cortex and medulla and marked hydronephrosis were observed on the cut surface of kidney. A single, numerous papillary projected, pedunculated mass 4~5.5 cm in diameter was occupied in renal pelvis, and extended from pelvis to the inlet of ureter. Histopathologically, the mass had numerous papillary structures with arboriform pattern. These papillae were consisted of fibro-vascular stalks that were lined by multiple layers of neoplastic urothelium (transitional epithelium) with marked cellular atypia. Immnohistochemical (IHC) staining demonstrated that the neoplastic cells showed strong positive reactions for cytokeratin (CK) 7, CK 19, CK clone MNF116 and CK high molecular weight, but negative signals for CK 8 low molecular weight. Based on the gross findings, histopathology and CKs profile using IHC staining, this mass was diagnosed as renal pelvis transitional cell carcinoma in a dog.

Formation and Stability of Nanoemulsion Containing CoQ10 by Mechanical Emulsification (코엔자임 Q10을 함유하는 나노에멀젼의 제조)

  • Yoo, In-Sang
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.467-473
    • /
    • 2012
  • Coenzyme Q10 (CoQ10) is a natural lipid cofactor with antioxidant and anti-aging properties as cosmetic and food ingredients, involved in cellular energy metabolism. Here, nano-emulsions with CoQ10 were fabricated with lecithin, ethanol, oil, and sorbitan monostearate (Arlacel 60), as major components. Phase inversion emulsion method with ultrasonicator was utilized in producing CoQ10 solution, and stabilization effects from lecithin and ethanol and other diverse perturbation factors were evaluated over time. Physical properties of the emulsion were characterized such as its size, surface charges by zeta-potential, and the overall structures. Optimal concentrations of CoQ10 and Arlacel 60 were 0.8% and 3%, respectively, for producing the smallest sizes of nanoemersions in a 100 nm diameter with best morphology. No notable changes in the size were observed over 7 days from Ostwald ripening, when the concentration of Arlacel 60 was higher than 2%. Even after 270 days at room temperature, the size of nanoemulsions maintained as 115 nm in diameter, revealing only a 10% increase with high degrees of long termed stability and substantiality. In addition, changes in the surface potential occurred possible due to the flocculation effect on the nanoparticles.

Nano-scale Design of electrode materials for lithium rechargeable batteries

  • Gang, Gi-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.72-72
    • /
    • 2012
  • Lithium rechargeable batteries have been widely used as key power sources for portable devices for the last couple of decades. Their high energy density and power have allowed the proliferation of ever more complex portable devices such as cellular phones, laptops and PDA's. For larger scale applications, such as batteries in plug-in hybrid electric vehicles (PHEV) or power tools, higher standards of the battery, especially in term of the rate (power) capability and energy density, are required. In PHEV, the materials in the rechargeable battery must be able to charge and discharge (power capability) with sufficient speed to take advantage of regenerative braking and give the desirable power to accelerate the car. The driving mileage of the electric car is simply a function of the energy density of the batteries. Since the successful launch of recent Ni-MH (Nickel Metal Hydride)-based HEVs (Hybrid Electric Vehicles) in the market, there has been intense demand for the high power-capable Li battery with higher energy density and reduced cost to make HEV vehicles more efficient and reduce emissions. However, current Li rechargeable battery technology has to improve significantly to meet the requirements for HEV applications not to mention PHEV. In an effort to design and develop an advanced electrode material with high power and energy for Li rechargeable batteries, we approached to this in two different length scales - Atomic and Nano engineering of materials. In the atomic design of electrode materials, we have combined theoretical investigation using ab initio calculations with experimental realization. Based on fundamental understanding on Li diffusion, polaronic conduction, operating potential, electronic structure and atomic bonding nature of electrode materials by theoretical calculations, we could identify and define the problems of existing electrode materials, suggest possible strategy and experimentally improve the electrochemical property. This approach often leads to a design of completely new compounds with new crystal structures. In this seminar, I will talk about two examples of electrode material study under this approach; $LiNi_{0.5}Mn_{0.5}O_2$ based layered materials and olivine based multi-component systems. In the other scale of approach; nano engineering; the morphology of electrode materials are controlled in nano scales to explore new electrochemical properties arising from the limited length scales and nano scale electrode architecture. Power, energy and cycle stability are demonstrated to be sensitively affected by electrode architecture in nano scales. This part of story will be only given summarized in the talk.

  • PDF

Painful Channels in Sensory Neurons

  • Lee, Yunjong;Lee, Chang-Hun;Oh, Uhtaek
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.315-324
    • /
    • 2005
  • Pain is an unpleasant sensation experienced when tissues are damaged. Thus, pain sensation in some way protects body from imminent threat or injury. Peripheral sensory nerves innervated to peripheral tissues initially respond to multiple forms of noxious or strong stimuli, such as heat, mechanical and chemical stimuli. In response to these stimuli, electrical signals for conducting the nociceptive neural signals through axons are generated. These action potentials are then conveyed to specific areas in the spinal cord and in the brain. Sensory afferent fibers are heterogeneous in many aspects. For example, sensory nerves are classified as $A{\alpha}$, $-{\beta}$, $-{\delta}$ and C-fibers according to their diameter and degree of myelination. It is widely accepted that small sensory fibers tend to respond to vigorous or noxious stimuli and related to nociception. Thus these fibers are specifically called nociceptors. Most of nociceptors respond to noxious mechanical stimuli and heat. In addition, these sensory fibers also respond to chemical stimuli [Davis et al. (1993)] such as capsaicin. Thus, nociceptors are considered polymodal. Recent advance in research on ion channels in sensory neurons reveals molecular mechanisms underlying how various types of stimuli can be transduced to neural signals transmitted to the brain for pain perception. In particular, electrophysiological studies on ion channels characterize biophysical properties of ion channels in sensory neurons. Furthermore, molecular biology leads to identification of genetic structures as well as molecular properties of ion channels in sensory neurons. These ion channels are expressed in axon terminals as well as in cell soma. When these channels are activated, inward currents or outward currents are generated, which will lead to depolarization or hyperpolarization of the membrane causing increased or decreased excitability of sensory neurons. In order to depolarize the membrane of nerve terminals, either inward currents should be generated or outward currents should be inhibited. So far, many cationic channels that are responsible for the excitation of sensory neurons are introduced recently. Activation of these channels in sensory neurons is evidently critical to the generation of nociceptive signals. The main channels responsible for inward membrane currents in nociceptors are voltage-activated sodium and calcium channels, while outward current is carried mainly by potassium ions. In addition, activation of non-selective cation channels is also responsible for the excitation of sensory neurons. Thus, excitability of neurons can be controlled by regulating expression or by modulating activity of these channels.

FINE STRUCTURES OF PHYSIOLOGIC AND PATHOLOGIC ROOT RESORPTION SURFACES OF DECIDUOUS TEETH (생리적 및 염증성 유치 치근 흡수면의 미세구조)

  • Park, Yoon-Hee;Sohn, Heung-Kyu;Choi, Byung-Jai
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.4
    • /
    • pp.524-534
    • /
    • 2000
  • Deciduous teeth can be extracted for two reasons, one due to the physiologic resorption and the other by the inflammation at the apex after traumatic injury. Physiologic resorption may be different from pathologic resorption in timing and mechanism. Therefore we resumed the different features of physiologic and pathologic resorption root surfaces. Many previous studies showed micromorphology of resorbed surface of roots of deciduous teeth. But, few studies compared physiological and pathological root resorption surfaces. In this study, we carefully observed microscopic morphologies of those two different root surfaces by scanning electron microscope and histologic features by light microscope. The resultant differences between physiologic and pathologic resorption surfaces of deciduous teeth were as follows: 1. The morphology of pathologic resorption lacunae due to inflammation varied in size and shape with irregular boundaries compared with the physiologic areas from scanning electron microscope observations. 2. From light microscope observations, several large resorption fossae containing numerous resorption lacunae were found, whereas the resorption lacunae were irregular in shape with pathologic resorption surface. 3. Numerous multinucleated giant cells were closely attached to the physiologic resorption lacunae, whereas several kinds of mesenchymal cells with numerous inflammatory cells were found in the areas adjacent to the pathologic resorption surface. 4. Light microscope findings showed that compensating cementum formation took place along some of the areas of inflammatory dentinal resorption. In conclusion, several morphological differences were present between physiologic and pathologic root resorption surfaces of human deciduous teeth. The future studies should include cytochemistry to clarify the cellular roles in resorption process observations of pulpal surfaces of coronal and radicular dentin to and the changes that occur in each phase of human deciduous tooth resorption.

  • PDF

Erk AND RETINOIC ACID SIGNALING PARTICIPATE IN THE SEGREGATION AND PATTERNING OF FIRST ARCH DERIVED MAXILLA AND MANDIBLE (Erk와 retinoic acid의 제1인구둥 패터닝 조절)

  • Park, Eun-Ju;Tak, Hye-Jin;Park, Eun-Ha;Baik, Jeong-Mi;Zhengguo, Piao;Lee, Sang-Hwy
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.2
    • /
    • pp.103-115
    • /
    • 2009
  • In vertebrates, the face is mainly formed with neural crest derived neural crest cells by the inherent programs and the interactive environmental factors. Extracellular signaling-regulated kinase (Erk) is one of such programs to regulate the various cellular functions. And retinoic acid (RA) also plays an important role as a regulator in differentiation process at various stages of vertebrate embryogenesis. We wanted to know that the segregation as well as the patterning of maxillary and mandibular structure is greatly influenced by the maxillomandibular cleft (MMC) and the failure of this development may result in the maxillomandibular fusion (syngnathia) or other patterning related disorder. It has been well documented that the epithelium at this cleft region has significant expression of Fibroblast growth factor (Fgf) 8, and it is essential for the patterning of the first arch derived structures. By the morphological, skeletal, cell proliferation and apoptotic, and hybridization analysis, we checked the effects of Erk inhibition and/or RA activation onto MMC and could observe that Erk and RA signaling is individually and synergically involved in the facial patterning in terms of FGF signaling pathway via Barx-l. So RA and Erk signaling work together for the MMC patterning and the segregation of maxilla-mandible by controlling the Fgf-related signaling pathways. And the abnormality in MMC brought by aberrant Fgf signaling may result in the disturbances of maxillary-mandibular segregation.

Anti-melanogenesis Activities for the Terpenes from the Acantophanax koreanum Stems (섬오갈피나무 줄기 유래 테르펜 화합물의 멜라닌 생성 저해 활성)

  • Mun, Seung Ri;Hyun, Ju Mi;Jo, Yeon Jeong;Jung, Eun Yeong;Lee, Nam Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.4
    • /
    • pp.289-295
    • /
    • 2017
  • A. koreanum was investigated to identify the constituents possessing whitening effects. As anti-melanogenesis activities were screened for the ethanol extract and solvent fractions, n-hexane (Hex) and ethyl acetate (EtOAc) fractions showed the most potent activities. Three constituents were isolated from the n-Hex fraction of A. koreanum; kaurenoic acid (1), $16{\alpha}$-hydro-17-isovaleroyloxy-ent-kauran-19-oicacid (2), $16{\alpha}$-hydroxy-17-isovaleroyl-oxy-ent-kauran-19-oic acid (3). The chemical structures of the isolated compounds were elucidated based on the spectroscopic data including $^1H$ and $^{13}C$ NMR spectra, as well as comparison of the data to the literature values. Whitening effects were studied for the isolated compounds. Upon the anti-melanogenesis test using ${\alpha}-MSH$ stimulated B16F10 melanoma cells, the compounds 1, 2 and 3 inhibited the cellular melanogenesis and intracellular tyrosinase activities effectively. Based on these results, A. koreanum stems extract could be potentially applicable as whitening ingredients in cosmetic formulations.

Characterization of the Alzheimer's disease-related network based on the dynamic network approach (동적인 개념을 적용한 알츠하이머 질병 네트워크의 특성 분석)

  • Kim, Man-Sun;Kim, Jeong-Rae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.529-535
    • /
    • 2015
  • Biological networks have been handled with the static concept. However, life phenomena in cells occur depending on the cellular state and the external environment, and only a few proteins and their interactions are selectively activated. Therefore, we should adopt the dynamic network concept that the structure of a biological network varies along the flow of time. This concept is effective to analyze the progressive transition of the disease. In this paper, we applied the proposed method to Alzheimer's disease to analyze the structural and functional characteristics of the disease network. Using gene expression data and protein-protein interaction data, we constructed the sub-networks in accordance with the progress of disease (normal, early, middle and late). Based on this, we analyzed structural properties of the network. Furthermore, we found module structures in the network to analyze the functional properties of the sub-networks using the gene ontology analysis (GO). As a result, it was shown that the functional characteristics of the dynamics network is well compatible with the stage of the disease which shows that it can be used to describe important biological events of the disease. Via the proposed approach, it is possible to observe the molecular network change involved in the disease progression which is not generally investigated, and to understand the pathogenesis and progression mechanism of the disease at a molecular level.

Molecular Ecological Characterization of Wastewater Bacterial Communities in Response to Algal Growth (조류성장에 따른 하수 박테리아 군집 변화에 관한 분자생태학적 연구)

  • Lee, Ju-Youn;Lee, Jang-Ho;Park, Joon-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.847-854
    • /
    • 2011
  • To deal with issues from global climate changes, renewable bioenergy has become important. Algae have been regarded as a good resource for biorefinery and bioenergy, and also have potential capability to remove nutrient and non-decompositional pollutants for wastewater advanced treatment. Although algal-bacterial ecological interaction would be a crucially important factor in using algae for wastewater advanced treatment and resource recovery from wastewater, very little is known about ecological interaction between algae and bacteria in a real wastewater environment. In this study, under a real municipal wastewater condition, we characterized wastewater pollutant treatability and bacterial communities in response to growth of Ankistrodesmus gracilis SAG278-2, which can grow in wastewater and has a high lipid contents. The growth of algal population using the wastewater was inhibited by increase in wastewater bacteria while bacterial survival and cellular decay rate were not influenced by the algal growth. Removals of recalcitrant organic matters and total nitrogen were improved in the presence of algal growth. According to T-RFLP and statistical analysis, algal growth affected time-course changes in bacterial community structures. The following 16S rRNA gene amplicon, cloning results showed that the algal growth changes in bacterial community structure, and that bacterial populations belonging to Sediminibacterium, Sphingobacterium, Mucilaginibacter genera were identified as cooperative with the algal growth in the wastewater.