• 제목/요약/키워드: cellular respiration

검색결과 51건 처리시간 0.033초

Accelerated Growth of Corynebacterium glutamicum by Up-Regulating Stress-Responsive Genes Based on Transcriptome Analysis of a Fast-Doubling Evolved Strain

  • Park, Jihoon;Lee, SuRin;Lee, Min Ju;Park, Kyunghoon;Lee, Seungki;Kim, Jihyun F.;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권9호
    • /
    • pp.1420-1429
    • /
    • 2020
  • Corynebacterium glutamicum, an important industrial strain, has a relatively slower reproduction rate. To acquire a growth-boosted C. glutamicum, a descendant strain was isolated from a continuous culture after 600 generations. The isolated descendant C. glutamicum, JH41 strain, was able to double 58% faster (td=1.15 h) than the parental type strain (PT, td=1.82 h). To understand the factors boosting reproduction, the transcriptomes of JH41 and PT strains were compared. The mRNAs involved in respiration and TCA cycle were upregulated. The intracellular ATP of the JH41 strain was 50% greater than the PT strain. The upregulation of NCgl1610 operon (a putative dyp-type heme peroxidase, a putative copper chaperone, and a putative copper importer) that presumed to role in the assembly and redox control of cytochrome c oxidase was found in the JH41 transcriptome. Plasmid-driven expression of the operon enabled the PT strain to double 19% faster (td=1.82 h) than its control (td=2.17 h) with 14% greater activity of cytochrome c oxidase and 27% greater intracellular ATP under the oxidative stress conditions. Upregulations of genes those might enhance translation fitness were also found in the JH41 transcriptome. Plasmid-driven expressions of NCgl0171 (encoding a cold-shock protein) and NCgl2435 (encoding a putative peptidyl-tRNA hydrolase) enabled the PT to double 22% and 32% faster than its control, respectively (empty vector: td=1.93 h, CspA: td=1.58 h, and Pth: td=1.44 h). Based on the results, the factors boosting growth rate in C. gluctamicum were further discussed in the viewpoints of cellular energy state, oxidative stress management, and translation.

Complete Genome and Calcium Carbonate Precipitation of Alkaliphilic Bacillus sp. AK13 for Self-Healing Concrete

  • Jung, Yoonhee;Kim, Wonjae;Kim, Wook;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권3호
    • /
    • pp.404-416
    • /
    • 2020
  • Bacteria that are resistant to high temperatures and alkaline environments are essential for the biological repair of damaged concrete. Alkaliphilic and halotolerant Bacillus sp. AK13 was isolated from the rhizosphere of Miscanthus sacchariflorus. Unlike other tested Bacillus species, the AK13 strain grows at pH 13 and withstands 11% (w/v) NaCl. Growth of the AK13 strain at elevated pH without urea promoted calcium carbonate (CaCO3) formation. Irregular vaterite-like CaCO3 minerals that were tightly attached to cells were observed using field-emission scanning electron microscopy. Energy-dispersive X-ray spectrometry, confocal laser scanning microscopy, and X-ray diffraction analyses confirmed the presence of CaCO3 around the cell. Isotope ration mass spectrometry analysis confirmed that the majority of CO32- ions in the CaCO3 were produced by cellular respiration rather than being derived from atmospheric carbon dioxide. The minerals produced from calcium acetate-added growth medium formed smaller crystals than those formed in calcium lactate-added medium. Strain AK13 appears to heal cracks on mortar specimens when applied as a pelletized spore powder. Alkaliphilic Bacillus sp. AK13 is a promising candidate for self-healing agents in concrete.

화학적 질식제 -청화물과 황화수소를 중심으로 (Chemical Asphyxiants - Cyanides and Hydrogen Sulfides)

  • 김양호;최영희;이충렬;이지호;유철인;이 현
    • 대한임상독성학회지
    • /
    • 제1권1호
    • /
    • pp.12-20
    • /
    • 2003
  • Cyanides and hydrogen sulfide ($H_2S$) are major chemical asphyxiants. They have common mechanism of action which inhibit cellular respiration and induce histotoxic hypoxia. They do not generate ATP, and all processes dependent on ATP are stopped. No extraction of $O_2$ from blood decreases AV $O_2$ differences, and the shift to anaerobic glycolysis brings about lactic acidosis with high anion gap. The mainstay of the treatment is rapid treatment with appropriate use of antidotes. However, there are several differences between cyanides and $H_2S$. First, $H_2S$ is not metabolized by enzymes such as thiosulfate. Thus thiosulfate does not play any role in treatment of $H_2S$. Second, $H_2S$ is a more potent inhibitor of cytochrome aa3 than cyanide. Third, $H_2S$ induces more divergent neurologic sequele than cyanide. Finally, $H_2S$ is not absorbed via skin.

  • PDF

Prediction of Non-Genotoxic Carcinogenicity Based on Genetic Profiles of Short Term Exposure Assays

  • Perez, Luis Orlando;Gonzalez-Jose, Rolando;Garcia, Pilar Peral
    • Toxicological Research
    • /
    • 제32권4호
    • /
    • pp.289-300
    • /
    • 2016
  • Non-genotoxic carcinogens are substances that induce tumorigenesis by non-mutagenic mechanisms and long term rodent bioassays are required to identify them. Recent studies have shown that transcription profiling can be applied to develop early identifiers for long term phenotypes. In this study, we used rat liver expression profiles from the NTP (National Toxicology Program, Research Triangle Park, USA) DrugMatrix Database to construct a gene classifier that can distinguish between non-genotoxic carcinogens and other chemicals. The model was based on short term exposure assays (3 days) and the training was limited to oxidative stressors, peroxisome proliferators and hormone modulators. Validation of the predictor was performed on independent toxicogenomic data (TG-GATEs, Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System, Osaka, Japan). To build our model we performed Random Forests together with a recursive elimination algorithm (VarSelRF). Gene set enrichment analysis was employed for functional interpretation. A total of 770 microarrays comprising 96 different compounds were analyzed and a predictor of 54 genes was built. Prediction accuracy was 0.85 in the training set, 0.87 in the test set and increased with increasing concentration in the validation set: 0.6 at low dose, 0.7 at medium doses and 0.81 at high doses. Pathway analysis revealed gene prominence of cellular respiration, energy production and lipoprotein metabolism. The biggest target of toxicogenomics is accurately predict the toxicity of unknown drugs. In this analysis, we presented a classifier that can predict non-genotoxic carcinogenicity by using short term exposure assays. In this approach, dose level is critical when evaluating chemicals at early time points.

Mitochondrial activity in illuminated leaves of chlorophyll-deficient mutant rice (OsCHLH) seedlings

  • Goh, Chang-Hyo;Satoh, Kouji;Kikuchi, Shoshi;Kim, Seong-Cheol;Ko, Suk-Min;Kang, Hong-Gyu;Jeon, Jong-Seong;Kim, Cheol-Soo;Park, Youn-Il
    • Plant Biotechnology Reports
    • /
    • 제4권4호
    • /
    • pp.281-291
    • /
    • 2010
  • The rice CHLH gene encodes the $Mg^{2+}$-chelatase H subunit, which is involved in chlorophyll biosynthesis. Growth of the chlorophyll-deficient oschlh mutant is supported by mitochondrial activity. In this study, we investigated the activity of mitochondrial respiration in the illuminated leaves during oschlh seedling development. Growth of mutant plants was enhanced in the presence of 3% sucrose, which may be used by mitochondria to meet cellular energy requirements. ATP content in these mutants was, however, significantly lowered in light conditions. Low cytosolic levels of NADH in illuminated oschlh mutant leaves further indicated the inhibition of mitochondrial metabolism. This down-regulation was particularly evident for oxidative stressresponsive genes in the mutant under light conditions. Hydrogen peroxide levels were higher in oschlh mutant leaves than in wild-type leaves; this increase was largely caused by the impairment of the expression of the antioxidant genes, such as OsAPXl, OsRACl, and OsAOXc in knockout plants. Moreover, treatment of mesophyll protoplasts with ascorbic acid or catalase recovered ATP content in the mutants. Taken together, these results suggest that the light-mediated inhibition of mitochondrial activity leads to stunted growth of CHLH rice seedlings.

Grapefruit 종자추출물을 이용한 Aspergillus parasiticus의 생육 및 Aflatoxin 생성억제 효과 (Inhibitory Effects of Grapefuit Seed Extract on Growth and Aflatoxin Production of Aspergillus parasiticus)

  • 조성환;정덕화;서일원;이현숙;황보혜;박우포
    • 한국식품위생안전성학회지
    • /
    • 제7권1호
    • /
    • pp.15-22
    • /
    • 1992
  • 농산물 및 그 가공식품을 수확·저장·가공하는 기간중에 Aspergillus parasiticus가 오염되어 aflatoxin을 생성하는 것을 방지할 목적으로 생육배지에 graefruit 종자추출물(GFSE)을 처리하여 곰팡이의 생육 및 aflatoxin 생합성을 저해하는 뚜렷한 효과를 관찰할 수 있었다. 4000 ppm의 GFSE농도 처리로 Aspergillus parasiticus의 생육을 92% 저해하였으며, 5000ppm 농도에서는 곰팡이 생육을 완전히 저해하였고 3000ppm 이상의 농도에서 aflatoxin 의생성을 100% 억제하였다. 한편, GFSE 처리에 의하여 aflatoxin 생합성 경로증, averufin, versiconal acetate 등의 중간대사산물이 aflatoxin으로 주입되는 것이 완전히 저해된 반면, versicolorin A, versicolorin A hemiacetal, sterigmatocystin 등은 aflatoxin 으로 전환되는 결과를 보여주어 GFSE는 versiconal acetate를 포함한 그 이전의 중간 대사물이 반응기질이 되는 효소 반응계를 저해하는 것으로 나타났다. 전자현미경을 이용한 곰팡이균체 및 포자의 형태변화는 GFSE처리에 의하여 세포막기능에 파괴되어 세포구성 내용물이 유실되고 곰팡이가 사멸하고 aflatoxin 생합성 기작이 중단되는 결과를 초래하였다.

  • PDF

Adenosin triphosphate로 치료한 이비인후과영역의 신경질환 20례 (The Study of A.T.P. for Treatment of 20 Cases of Neurogenic Disordors in E.N.T. Field)

  • 박재훈;김춘길;주양자
    • 대한기관식도과학회:학술대회논문집
    • /
    • 대한기관식도과학회 1972년도 춘계종합 학술대회 초록집
    • /
    • pp.3.2-3
    • /
    • 1972
  • 생체 세포내에서 큰 Eenergy 원이 되는 Adenosin triphosphate를 사용하여 이 A.T.P.의 뇌 급 내이혈행 개선작용에 따르는 신경, 감각세포에 대한 직접적 대사촉진작용을 이용하여 20례의 난청, 이명, 연구개마비 환자를 치료하였다. 저자들이 사용한 방법은 20mg A.T.P. +50mg Vitamin $B_1$+20% Dextore 2㏄로 매일 정주하여 난청은 40%, 이명은 62%, 연구개마비는 100%의 호전을 보았기에 문헌적 고찰과 더불어 보고한다.

  • PDF

Transcriptomic Approach for Understanding the Adaptation of Salmonella enterica to Contaminated Produce

  • Park, Sojung;Nam, Eun woo;Kim, Yeeun;Lee, Seohyeon;Kim, Seul I;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권11호
    • /
    • pp.1729-1738
    • /
    • 2020
  • Salmonellosis is a form of gastroenteritis caused by Salmonella infection. The main transmission route of salmonellosis has been identified as poorly cooked meat and poultry products contaminated with Salmonella. However, in recent years, the number of outbreaks attributed to contaminated raw produce has increased dramatically. To understand how Salmonella adapts to produce, transcriptomic analysis was conducted on Salmonella enterica serovar Virchow exposed to fresh-cut radish greens. Considering the different Salmonella lifestyles in contact with fresh produce, such as motile and sessile lifestyles, total RNA was extracted from planktonic and epiphytic cells separately. Transcriptomic analysis of S. Virchow cells revealed different transcription profiles between lifestyles. During bacterial adaptation to fresh-cut radish greens, planktonic cells were likely to shift toward anaerobic metabolism, exploiting nitrate as an electron acceptor of anaerobic respiration, and utilizing cobalamin as a cofactor for coupled metabolic pathways. Meanwhile, Salmonella cells adhering to plant surfaces showed coordinated upregulation in genes associated with translation and ribosomal biogenesis, indicating dramatic cellular reprogramming in response to environmental changes. In accordance with the extensive translational response, epiphytic cells showed an increase in the transcription of genes that are important for bacterial motility, nucleotide transporter/metabolism, cell envelope biogenesis, and defense mechanisms. Intriguingly, Salmonella pathogenicity island (SPI)-1 and SPI-2 displayed up- and downregulation, respectively, regardless of lifestyles in contact with the radish greens, suggesting altered Salmonella virulence during adaptation to plant environments. This study provides molecular insights into Salmonella adaptation to plants as an alternative environmental reservoir.

Effects of Red Deer Antlers on Cutaneous Wound Healing in Full-thickness Rat Models

  • Gu, LiJuan;Mo, EunKyoung;Yang, ZhiHong;Fang, ZheMing;Sun, BaiShen;Wang, ChunYan;Zhu, XueMei;Bao, JianFeng;Sung, ChangKeun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권2호
    • /
    • pp.277-290
    • /
    • 2008
  • The process of wound repair involves an ordered sequence of events such as overlapping biochemical and cellular events that, in the best of circumstances, result in the restoration of both the structural and functional integrity of the damaged tissue. An important event during wound healing is the contraction of newly formed connective tissues by fibroblasts. The polypeptide growth factors, like transforming growth factor-${\beta}$(TGF-${\beta}$, insulin-like growth factor I (IGF- I) and epidermal growth factor (EGF), play very important mediator roles in the process of wound contraction. Deer antlers, as models of mammalian regeneration, are cranial appendages that develop after birth as extensions of a permanent protuberance (pedicle) on the frontal bone. Antlers contain various growth factors which stimulate dermal fibroblast growth. They are involved in digestion and respiration and are necessary for normal wound healing and skin health. In order to investigate and evaluate the effects of red deer antlers on skin wound site, the speed of full-thickness skin wound healing and the expression of IGF-I, TGF-${\beta}$ and EGF in skin wounds, three groups of skin full-thickness rat models with a high concentration of antler ointment, a low concentration of antler ointment and without antler ointment were compared. At post-injury days 0, 2, 4, 8, 16, 20, 32, 40 and 60, the skin wound area was measured, the expressions of IGF-I, TGF- ${\beta}$ and EGF mRNA were detected by reverse transcriptase polymerase chain reaction (RT-PCR) and collagen formation by sirius red dye and the localization of IGF-I, TGF-${\beta}$ and EGF peptides were inspected by histological immunohistochemical techniques. Wound healing was significantly more rapid in antler treated skins. In addition, the wound treated with a high concentration antler ointment, a low concentration antler ointment, and the control closed completely at post-injury day 40, day 44 and day 60, respectively. Via RT-PCR, the expressions of IGF-I (day 8 and day 16), TGF-${\beta}$(day 8, day 16 and day 20) and EGF (day 4, day 8, day 16, and day 32) were obviously up-regulated in high concentration antler-treated skins compared to control skins. Similar results could be seen in the histological detection of collagen dye and immunohistochemical methods using the corresponding polyclone antibodies of IGF-I, TGF-${\beta}$ and EGF. These results illustrate that antlers stimulate and accelerate the repair of cutaneous wounds.

병풀(Centella asiatica) 및 아시아티코사이드는 미토콘드리아 호흡 및 TLR4 경로를 통해 H2O2 유도 세포염증 조절 (Centella asiatica and Asiaticoside Regulate H2O2-induced Cellular Inflammation via Mitochondrial Respiration and the TLR4 Pathway)

  • 지주리;남영선;강상모
    • 생명과학회지
    • /
    • 제31권4호
    • /
    • pp.389-399
    • /
    • 2021
  • 이 연구는 인간진피섬유아(HDF)세포에서 병풀 및 아시아티코사이드가 H2O2 유래 세포주기 정지기, 미토콘드리아 활성 및 염증성 사이토카인에 미치는 영향을 조사하였다. 병풀 80% 메탄올 추출물, 에틸아세티이트 분획물 및 병풀의 대표물질인 아시아티코사이드를 사용하였다. 병풀 추추물, 에틸아세테이트 분획 및 아시아티코사이드로 처리한 세포는 낮은 수준의 TNF-α 및 IL-6을 분비하였고, 아시아티코사이드의 항산화 효과는 병풀 추출물 및 에틸아세테이트 분획물보다 높았다. 아시아티코사이드 처리는 미토콘드리아의 막포텐셜을 증가시키고, 미토콘드리아를 정상으로 되돌렸다. 스트레스 유도 후 에틸아세테이트 분획물 및 아시아티코사이드에 의해 미토콘드리아 산소 소비율이 증가하였고, TLR4-MyD88-TRAF6-p65 경로가 재감소하였다. 이러한 결과는 병풀 추출물, 에틸 아세테이트 분획 및 아시아티코사이드가 HDF 세포의 미토콘드리아 활성을 조절할 뿐 아니라 항산화 및 항염증에 효과 있음을 시사한다.