• 제목/요약/키워드: cellular respiration

Search Result 51, Processing Time 0.029 seconds

Development of a multi channel measurement system for the cellular respiration measurement (세포 호흡량 측정용 다채널 측정 시스템 개발)

  • Nam, Hyun-Wook;Park, Jung-Il;KimPak, Young-Mi;Pak, James Jung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.36-42
    • /
    • 2010
  • This paper describes a multi channel measurement system which can measure the cellular respiration level in a solution containing cells by using a Clark-type sensor with the solution temperature control unit. The Clark-type sensor can measure the cellular respiration level in the solution because it can measure the reduction current depending on the dissolved oxygen level in the solution. This measurement system was maintained the temperature within ${\pm}0.1^{\circ}C$ of the setting temperature value by on/off control method in order to measure the precise cellular respiration level. The measurement system showed that the applied voltage to the working electrode was very stable(-0.8 V$\pm$ 0.0071 V) by using proportional control method. From the current measurement, the response time and the linearity correlation coefficient were 25 sec and 0.94, respectively, which are very close to the results of the commercial product. Using this system and the fabricated Clarktype sensor, the average ratio of the uncoupled OCR(oxygen consumption rate) to the coupled OCR was 1.35 and this is almost the same as that obtained from a commercial systems.

Measurement of the effects of RF exposure on human physiology by cellular phones (휴대전화 전자파 노출에 의한 생리학적 영향 측정)

  • Nam, Ki-Chang;Jung, Won-Hyuk;Park, Joong-Hoon;Kim, Deok-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.42-44
    • /
    • 2005
  • Many cellular phone volunteer studies have been conducted since such a social issue is raised that the long time usage of cellular phone may increase health risk. While there were various volunteer studies using GSM cellular phone on heart rate and blood pressure at abroad, very few studies using CDMA phone were conducted in domestic and abroad. In this study, the volunteer groups of 21 adults were exposed at 300 mW for half an hour, and the physiological parameters such as blood pressure, heart rate, respiration rate, and skin impedance were measured. All the parameters' results did not reveal any differences between exposure and non-exposure conditions in adults.

  • PDF

Caloric Restriction-Induced Extension of Chronological Lifespan Requires Intact Respiration in Budding Yeast

  • Kwon, Young-Yon;Lee, Sung-Keun;Lee, Cheol-Koo
    • Molecules and Cells
    • /
    • v.40 no.4
    • /
    • pp.307-313
    • /
    • 2017
  • Caloric restriction (CR) has been shown to extend lifespan and prevent cellular senescence in various species ranging from yeast to humans. Many effects of CR may contribute to extend lifespan. Specifically, CR prevents oxidative damage from reactive oxygen species (ROS) by enhancing mitochondrial function. In this study, we characterized 33 single electron transport chain (ETC) gene-deletion strains to identify CR-induced chronological lifespan (CLS) extension mechanisms. Interestingly, defects in 17 of these 33 ETC gene-deleted strains showed loss of both respiratory function and CR-induced CLS extension. On the contrary, the other 16 respiration-capable mutants showed increased CLS upon CR along with increased mitochondrial membrane potential (MMP) and intracellular adenosine triphosphate (ATP) levels, with decreased mitochondrial superoxide generation. We measured the same parameters in the 17 non-respiratory mutants upon CR. CR simultaneously increased MMP and mitochondrial superoxide generation without altering intracellular ATP levels. In conclusion, respiration is essential for CLS extension by CR and is important for balancing MMP, ROS, and ATP levels.

Major ginsenosides from Panax ginseng promote aerobic cellular respiration and SIRT1-mediated mitochondrial biosynthesis in cardiomyocytes and neurons

  • Huang, Qingxia;Lou, Tingting;Lu, Jing;Wang, Manying;Chen, Xuenan;Xue, Linyuan;Tang, Xiaolei;Qi, Wenxiu;Zhang, Zepeng;Su, Hang;Jin, Wenqi;Jing, Chenxu;Zhao, Daqing;Sun, Liwei;Li, Xiangyan
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.759-770
    • /
    • 2022
  • Background: Aerobic cellular respiration provides chemical energy, adenosine triphosphate (ATP), to maintain multiple cellular functions. Sirtuin 1 (SIRT1) can deacetylate peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) to promote mitochondrial biosynthesis. Targeting energy metabolism is a potential strategy for the prevention and treatment of various diseases, such as cardiac and neurological disorders. Ginsenosides, one of the major bioactive constituents of Panax ginseng, have been extensively used due to their diverse beneficial effects on healthy subjects and patients with different diseases. However, the underlying molecular mechanisms of total ginsenosides (GS) on energy metabolism remain unclear. Methods: In this study, oxygen consumption rate, ATP production, mitochondrial biosynthesis, glucose metabolism, and SIRT1-PGC-1α pathways in untreated and GS-treated different cells, fly, and mouse models were investigated. Results: GS pretreatment enhanced mitochondrial respiration capacity and ATP production in aerobic respiration-dominated cardiomyocytes and neurons, and promoted tricarboxylic acid metabolism in cardiomyocytes. Moreover, GS clearly enhanced NAD+-dependent SIRT1 activation to increase mitochondrial biosynthesis in cardiomyocytes and neurons, which was completely abrogated by nicotinamide. Importantly, ginsenoside monomers, such as Rg1, Re, Rf, Rb1, Rc, Rh1, Rb2, and Rb3, were found to activate SIRT1 and promote energy metabolism. Conclusion: This study may provide new insights into the extensive application of ginseng for cardiac and neurological protection in healthy subjects and patients.

Study on the Pye(Fei)/Lungs Control Ki(Qi) (폐주기(肺主氣)에 관한 고찰)

  • Song, Ji-Chung;Jung, Hun-Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.761-764
    • /
    • 2009
  • The Pye is one of the organs in oriental medicine, which has functions of controlling Ki. The Lungs is also a organ that has a function of respiration, in western medicne. Ki means the air in the first notion. Therefore, the functions of the Lungs and Pye are no differences. However, Ki doesn't mean the air only. Respiration in western medicne has two meanings. One of them is a external respiration, ang the other is a cellular respiration. In that process, the Lungs supervise oxygen and oxidation of protein, carbohydrate and fat and prduce ATP as energy. Two of Functions in Ki are Choodong(推動;Tuidong) and Onhoo(溫煦;Wenxu). Choodong means making energy ang Onhoo means making heat, that indicate a similarity functions of Pye and Lungs from the view of making energy.

EFFECT OF GINSENG EXTRACT ON OXYGEN CONSUMPTION IN RAT LIVER MITOCHONDRIA (인삼 추출물이 세포의 산소소모에 미치는 영향)

  • TSO Wung-Wai
    • Proceedings of the Ginseng society Conference
    • /
    • 1984.09a
    • /
    • pp.141-144
    • /
    • 1984
  • With microorganism as a single cell model to investigate the cellular effect of total extract of ginseng powder, it was found that ginseng affects cellular respiration biphasically (Tso and Fung, 1980; Tso, 1981). As ginseng is recognized to be a tonic medicinal herb, this finding suggests a possible role of ginseng in altering cellular energy metabolism. Along this line, the same effect on mitochondrial oxygen consumption was studied. It was found that under a controlled pH condition, a significant stimulation of the mitochondrial respiration was observed. This stimulation was ginseng dose-dependent. However, when ginseng was applied at an above threshold concentration, an inhibitory effect was noted. This confirms the previous observation with single cell organism and suggests a universal regulation of energy metabolism effect that transcends cell origin.

  • PDF

Effects of Dietary Rice Bran Oil on Mitochondrial Respiration in M2-induced Bone Marrow-derived Macrophages (현미유가 생쥐의 골수로부터 M2로 유도한 대식세포의 미토콘드리아 호흡에 미치는 영향)

  • Lee, Sojung;Kim, Wooki
    • Food Engineering Progress
    • /
    • v.22 no.4
    • /
    • pp.353-357
    • /
    • 2018
  • Previous studies have suggested that rice bran oil (RBO), an edible oil from the byproducts of rice milling, has anti-inflammatory effects in inflammation inducing macrophages, known as M1 subsets. Yet the effects of RBO on the counterpart M2 subsets, the "healing" macrophages, were poorly investigated to date. In this regard, recent studies on the molecular/cellular anti-inflammatory mechanisms of dietary components have demonstrated that mitochondrial respiration contributes to macrophage functioning. Therefore, the current study examined whether RBO regulates cytokine secretion by modulating mitochondrial metabolism in wound healing M2 subsets. Palm oil (PO), enriched with medium-chain fatty acids, served as a positive control. C57BL/6 mice were fed a diet containing either corn oil (CO), PO or RBO for 4 weeks, followed by purification of bone marrow-derived macrophages (BMDM) from their tibias and femurs. Cells were further polarized to M2-BMDM, and the expression of M2 marker (CD206) on cellular surfaces were not affected by dietary intervention. In addition, the secretion of anti-inflammatory cytokine (IL-10) in the culture supernatant was not affected by dietary lipids. Oxygen consumption rate, the indicator of mitochondrial respiration in M2-BMDM was not regulated by RBO intervention and PO treatment. Taken together, this study imply that RBO did not intervene both the regulation of inflammatory responses and mitochondrial respiration in M2 macrophages.

Effects of RF Exposure on Human Physiology by CDMA Cellular Phones (CDMA 휴대전화 전자파에 의한 생리학적 변화)

  • Nam Ki-Chang;Kim Sung-Woo;Kim Soo-Chan;Kim Deok-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.511-517
    • /
    • 2005
  • Many cellular phone volunteer studies have been conducted since such a social issue is raised that the long time usage of cellular phone by teenagers may increase health risk. While there were various adult volunteer studies using GSM cellular phone on heart rate and blood pressure, very few teenager studies using CDMA phone were conducted. In this study, two volunteer groups of 21 teenagers and 21 adults were exposed to 300 mW CDMA wave for half an hour, and the physiological parameters such as blood pressure, heart rate, respiration rate, and skin impedance were investigated. All the parameters fur both groups were unaffected during exposure except the skin impedance of teenager group.

The Effect of Ginseng Saponin on Morphine Action of $Qo_2$ and Na, K content in Cerebral Cortex Slices of Rat (인삼(人蔘) Saponin 이 Morphine 에 의(依)한 Rat 대뇌피질절편(大腦皮質切片) 산소소비양(酸素消費量) 및 $Na^+$, $K^+$ 소장(消長)에 미치는 영향(影響))

  • Park, Chan-Woong
    • The Korean Journal of Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.29-33
    • /
    • 1969
  • The effects of Ginseng saponin on respiration and $Na^+$, $K^+$ content of rat cerebral cortex slices were investigated to determine the action of Ginseng saponin on brain cortex at cellular level. There are many reports for the study of Ginseng on central stimulatory action in experimental animals. The electrical stimulation of slices of cortex causes a loss of potassium. And the respiration is needed to maintain a supply of energy for active cation transport. The reduction in $Qo_2$ is a consequence of primary cessation of active cation transport. Ginseng saponin stimulated respiration which was depressed by Morphine. But there was no significant change of electrolyte. It is suggested that the Ginseng saponin act rather on metabolic process than neural excitatory mechanism in vitro.

  • PDF

Effects of Alantolactone on the Respiration of Potato Tuber Slices (감자 절편의 호흡에 미치는 Alantolactone의 영향)

  • 정인선
    • Journal of Plant Biology
    • /
    • v.25 no.2
    • /
    • pp.65-72
    • /
    • 1982
  • The oxygen consumption of fresh and aged slices of potato tuber was 40.6 and 168.0 ,$0_2$ $\mu$l/g fr $wt{\cdot}h$, respectively. After initial burst of oxygen consumption within 2 minutes(i.e., 40% for fresh and 12% for aged slices) in the treatmentof $50{\mu}M$ alantolactone, gradual decrease of respiration rate was observed during 3 hours of incubation. In case of the aged slices the initial burst of oxygen consumption was not observed by salicylhydroxamic acid (SHAM) or KCN. The combined effect of SHAM and alantolactone showed increase of 12%, while SHAM and KCN combination showed 60% decrease. In addition, the lipophilicity of cell membrane of onion inner epidermis was increased by lantolactone treatment. The results suggest that the primary effect of alantolactone on the cellular respiration may be associated with an alteration of lipophilic phase of cell membrane and a consequent increase of electron flow throuh the cytochrome system.

  • PDF