• Title/Summary/Keyword: cellular membrane

Search Result 749, Processing Time 0.024 seconds

Mechanisms and Physiological Roles of Mitophagy in Yeast

  • Fukuda, Tomoyuki;Kanki, Tomotake
    • Molecules and Cells
    • /
    • v.41 no.1
    • /
    • pp.35-44
    • /
    • 2018
  • Mitochondria are responsible for supplying of most of the cell's energy via oxidative phosphorylation. However, mitochondria also can be deleterious for a cell because they are the primary source of reactive oxygen species, which are generated as a byproduct of respiration. Accumulation of mitochondrial and cellular oxidative damage leads to diverse pathologies. Thus, it is important to maintain a population of healthy and functional mitochondria for normal cellular metabolism. Eukaryotes have developed defense mechanisms to cope with aberrant mitochondria. Mitochondria autophagy (known as mitophagy) is thought to be one such process that selectively sequesters dysfunctional or excess mitochondria within double-membrane autophagosomes and carries them into lysosomes/vacuoles for degradation. The power of genetics and conservation of fundamental cellular processes among eukaryotes make yeast an excellent model for understanding the general mechanisms, regulation, and function of mitophagy. In budding yeast, a mitochondrial surface protein, Atg32, serves as a mitochondrial receptor for selective autophagy that interacts with Atg11, an adaptor protein for selective types of autophagy, and Atg8, a ubiquitin-like protein localized to the isolation membrane. Atg32 is regulated transcriptionally and post-translationally to control mitophagy. Moreover, because Atg32 is a mitophagy-specific protein, analysis of its deficient mutant enables investigation of the physiological roles of mitophagy. Here, we review recent progress in the understanding of the molecular mechanisms and functional importance of mitophagy in yeast at multiple levels.

Pattern-Recognition Receptor Signaling Initiated From Extracellular, Membrane, and Cytoplasmic Space

  • Lee, Myeong Sup;Kim, Young-Joon
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • Invading pathogens are recognized by diverse germline-encoded pattern-recognition receptors (PRRs) which are distributed in three different cellular compartments: extracellular, membrane, and cytoplasmic. In mammals, the major extracellular PRRs such as complements may first encounter the invading pathogens and opsonize them for clearance by phagocytosis which is mediated by membrane-associated phagocytic receptors including complement receptors. The major membrane-associated PRRs, Toll-like receptors, recognize diverse pathogens and generate inflammatory signals to coordinate innate immune responses and shape adaptive immune responses. Furthemore, certain membrane-associated PRRs such as Dectin-1 can mediate phagocytosis and also induce inflammatory response. When these more forefront detection systems are avoided by the pathogens, cytoplasmic PRRs may play major roles. Cytoplasmic caspase-recruiting domain (CARD) helicases such as retinoic acid-inducible protein I (RIG-I)/melanoma differentiation-associated gene 5 (MDA5), mediate antiviral immunity by inducing the production of type I interferons. Certain members of nucleotide-binding oligomerization domain (NOD)-like receptors such as NALP3 present in the cytosol form inflammasomes to induce inflammatory responses upon ligand recognition. Thus, diverse families of PRRs coordinately mediate immune responses against diverse types of pathogens.

Diffusion-based determination of protein homodimerization on reconstituted membrane surfaces

  • Jepson, Tyler A.;Chung, Jean K.
    • BMB Reports
    • /
    • v.54 no.3
    • /
    • pp.157-163
    • /
    • 2021
  • The transient interactions between cellular components, particularly on membrane surfaces, are critical in the proper function of many biochemical reactions. For example, many signaling pathways involve dimerization, oligomerization, or other types of clustering of signaling proteins as a key step in the signaling cascade. However, it is often experimentally challenging to directly observe and characterize the molecular mechanisms such interactions-the greatest difficulty lies in the fact that living cells have an unknown number of background processes that may or may not participate in the molecular process of interest, and as a consequence, it is usually impossible to definitively correlate an observation to a well-defined cellular mechanism. One of the experimental methods that can quantitatively capture these interactions is through membrane reconstitution, whereby a lipid bilayer is fabricated to mimic the membrane environment, and the biological components of interest are systematically introduced, without unknown background processes. This configuration allows the extensive use of fluorescence techniques, particularly fluorescence fluctuation spectroscopy and single-molecule fluorescence microscopy. In this review, we describe how the equilibrium diffusion of two proteins, K-Ras4B and the PH domain of Bruton's tyrosine kinase (Btk), on fluid lipid membranes can be used to determine the kinetics of homodimerization reactions.

Growth Properties and Cholesterol Removal Ability of Electroporated Lactobacillus acidophilus BT 1088

  • Lye, H.S.;Khoo, B.Y.;Karim, A.A.;Rusul, G.;Liong, M.T.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.981-989
    • /
    • 2012
  • This study aimed to evaluate the effects of electroporation on the cell growth, cholesterol removal, and adherence abilities of L. acidophilus BT 1088 and their subsequent passages. The growth of electroporated parent cells increased (P<0.05) by 4.49-21.25% compared with that of the control. This may be attributed to the alteration of cellular membrane. However, growth of first, second, and third passages of treated cells was comparable with that of the control, which may be attributed to the resealing of transient pores on the cellular membrane. Electroporation also increased (P<0.05) assimilation of cholesterol by treated parent cells (>185.40%) and first passage (>21.72%) compared with that of the control. Meanwhile, incorporation of cholesterol into the cellular membrane was also increased (P<0.05) in the treated parent cells (>108.33%) and first passage (>26.67%), accompanied by increased ratio of cholesterol:phospholipids (C:P) in these passages. Such increased ratio was also supported by increased enrichment of cholesterol in the hydrophilic heads, hydrophobic tails, and the interface regions of the membrane phospholipids of both parent and first passage cells compared with that of the control. However, such traits were not inherited by the subsequent second and third passages. Parent cells also showed decreased intestinal adherence ability (P<0.05; decreased by 1.45%) compared with that of the control, without inheritance by subsequent passages of treated cells. Our data suggest that electoporation could be a potential physical treatment to enhance the cholesterol removal ability of lactobacilli that was inherited by the first passage of treated cells without affecting their intestinal adherence ability.

Expression of Latent P-Type ATPases and Their Presumptive Roles in Cell Membrane of Helicobacter pylori

  • YUN, SOON-KYU;SE-YOUNG HWANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.6
    • /
    • pp.378-385
    • /
    • 1997
  • Cation motive ATPases on cell membranes of Helicobacter pylori were investigated using everted membrane vesicles. Latent ATPases could be ascertained from aggregated vesicle using N, N-dimethylformamide (DMF) and Triton X-100. By contrast, ultrasonication or chloroform treatments caused membranes to be disrupted, resulting in an alteration of sensitivities against azide or vanadate. Considerable amounts of vanadate-sensitive enzymes were identified from vesicle micelles, prepared by the dilution method. These were activated in the presence of either $Ni^{2+}\;or\;NH_4^+$. From studies employing H. pylori intact cell systems, we found that ATPase expression of this bacterium was markedly dependent upon air composition. It was interesting that cellular expression of $Ni^{2+}$- or $NH_4^{+}$-motive ATPases was significantly affected by extracellular pH, suggesting that these unique enzymes may physiologically be involved in cellular $Ni^2$ import and $NH_4^+$ export, respectively.

  • PDF

Atomic Force Microscopy of Asymmetric Membranes from Turtle Erythrocytes

  • Tian, Yongmei;Cai, Mingjun;Xu, Haijiao;Ding, Bohua;Hao, Xian;Jiang, Junguang;Sun, Yingchun;Wang, Hongda
    • Molecules and Cells
    • /
    • v.37 no.8
    • /
    • pp.592-597
    • /
    • 2014
  • The cell membrane provides critical cellular functions that rely on its elaborate structure and organization. The structure of turtle membranes is an important part of an ongoing study of erythrocyte membranes. Using a combination of atomic force microscopy and single-molecule force spectroscopy, we characterized the turtle erythrocyte membrane structure with molecular resolution in a quasi-native state. High-resolution images both leaflets of turtle erythrocyte membranes revealed a smooth outer membrane leaflet and a protein covered inner membrane leaflet. This asymmetry was verified by single-molecule force spectroscopy, which detects numerous exposed amino groups of membrane proteins in the inner membrane leaflet but much fewer in the outer leaflet. The asymmetric membrane structure of turtle erythrocytes is consistent with the semi-mosaic model of human, chicken and fish erythrocyte membrane structure, making the semi-mosaic model more widely applicable. From the perspective of biological evolution, this result may support the universality of the semi-mosaic model.

Toxicological Relevance of Transporters

  • Maeng, Han-Joo;Chung, Suk-Jae
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • Transporters are membrane proteins that mediate the transfer of substrate across the cellular membrane. In this overview, the characteristics and the toxicological relevance were discussed for various types of transporters. For drug transporters, the overview focused on ATP-binding cassette transporters and solute carrier family 21A/22A member transporters. Except for OCTN transporters and OATP transporters, drug transporters tend to have broad substrate specificity, suggesting drug-drug interaction at the level of transport processes (e.g., interaction between methotrexate and non-steroidal anti-inflammatory agents) is likely. For metal transporters, transporters for zinc, copper and multiple metals were discussed in this overview. These metal transporters have comparatively narrow substrate specificity, except for multiple metal transporters, suggesting that inter-substrate interaction at the level of transport is less likely. In contrast, the expressions of the transporters are often regulated by their substrates, suggesting cellular adaptation mechanism exists for these transporters. The drug-drug interactions in drug transporters and the cellular adaptation mechanisms for metal transporters are likely to lead to alterations in pharmacokinetics and cellular metal homeostasis, which may be linked to the development of toxicity. Therefore, the transporter-mediated alterations may have toxicological relevance.

Physiology of Cellular Prion Proteins in Reproduction

  • Zeljko M. Svedruzic;Chongsuk Ryou;Donchan Choi;Sung-Ho Lee;Yong-Pil Cheon
    • Development and Reproduction
    • /
    • v.28 no.2
    • /
    • pp.29-36
    • /
    • 2024
  • Cellular prion protein (PrPC) encoded at Prnp gene is well-known to form a misfolded isoform, termed scrapie PrP (PrPSC) that cause transmissible degenerative diseases in central nervous system. The physiological role of PrPC has been proposed by many studies, showing that PrPC interacts with various intracellular, membrane, and extracellular molecules including mitochondrial inner membrane as a scaffold. PrPC is expressed in most cell types including reproductive organs. Numerous studies using PrPC knockout rodent models found no obvious phenotypic changes, in particular the clear phenotypes in development and reproduction have not demonstrated in these knockout models. However, various roles of PrPC have been evaluated at the cellular levels. In this review, we summarized the known roles of PrPC in various cell types and tissues with a special emphasis on those involved in reproduction.

Synthetic membranes in Biotechnology: Realities and Possibilities

  • Belfort, Georges
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1992.10a
    • /
    • pp.15-33
    • /
    • 1992
  • Synthetic membrane processes are being increasingly integrated into existing reaction, isolation, and recovery schemes for the production of valuable biological molecules. In many cases they are replacing traditional unit processes. The properties of membrane systems which are most often exploited for both upstream and downstream processing are their permselectivity, high surface area per unit volume, and their potential for controlling the level of contact and/or mixing between two separate phases. Advances in both membrane materials and module design and operation have led to better control of concentration polarization and membrane fouling. After presenting some recent advances in membrane materials and fluid mechanics, we demonstrate how membranes have been integrated into cellular and enzymatic reaction schemes. This is followed by a review of established and emerging membrane separation processes. Several examples are used to emphasize the synergism between biological processes and synthetic membranes.

Piezo-assisted Intracytoplasmic Sperm Injection in Cattle

  • Kim, Se-Woong;Kang, Ho-In;Sung, Ji-Hye;Roh, Sang-Ho
    • Journal of Embryo Transfer
    • /
    • v.25 no.2
    • /
    • pp.97-101
    • /
    • 2010
  • Intracytoplasmic sperm injection (ICSI) is one of the artificial fertilization methods when only a few sperm are available for insemination, and an important tool for the preservation of genetic materials of endangered animal species, especially the male is infertile. Different from other species such as mice and pigs, the conventional ICSI method which uses spiked pipette for injection (Spike-ICSI) is exhibited low success rates in cattle because the bovinesperm head membrane is hard to break during injection procedure. We chose piezo-assisted ICSI (Piezo-ICSI) for the improvement of the injection procedure including sperm head membrane rupture and efficient puncture of the plasma membrane of the oocytes. In this experiment, we compared the efficacy of the bovine ICSI embryo production between the Piezo-ICSI and Spike-ICSI. The second polar body extrusion, pronuclear formation, cleavage and blastocyst formation were evaluated after implementation of two different ICSI techniques. The Piezo-ICSI tended to show comparably higher rates of the second polar body extrusion (41.7%), the pronuclei formation (42.9%) and the two-cell cleavage (41.4%) than Spike-ICSI does (33.3%, 28.6% and 23.5%, respectively) although there is no statistic significance between two groups. In addition, the blastocysts were only obtained from the Piezo-ICSI group (10.3%). Our finding shows that the Piezo-ICSI may be used as an artificial fertilization method in cattle when in vitro fertilization is not applicable.