• 제목/요약/키워드: cellular manufacturing systems

검색결과 63건 처리시간 0.022초

증기 전처리 및 2단 증해 시스템에 의한 닥 인피부의 펄프화 특성 (Pulping Properties of Bast Fibers of Paper Mulberry by Pre-steaming and 2-stage Cooking System)

  • 황지현;서진호;김형진
    • 펄프종이기술
    • /
    • 제45권1호
    • /
    • pp.75-82
    • /
    • 2013
  • The traditional Hanji-making was confronted with lots of industrial disadvantages and economic problems, due to the original hand-made process. Recently, the studies on the automation of overall Hanji manufacturing process is carried out by applying the commercial chemical pulping method in order to expand industrial application or efficiency of non-wood fibrous materials. However, the application of commercial pulping methods to the bast tissues of paper mulberry leads to the chemical and mechanical deterioration of cellulosic fibers. In this study, the optimal cooking method using the bast parts of paper mulberry produced by an auto-scraping device was applied to minimize the damage of fiber strength for the paper yarn manufacture. The pre-steaming treatment and alkaline pulping systems were evaluated in removal efficiency of lignin and pectin materials within the bast tissue of paper mulberry. With the application of pre-steaming treatment and 2 stage pulping system using potassium carbonate and then sodium hydroxide, kappa values were decreased two times more in lignin removal than the single stage of pulping method. It was also identified from SEM images and ATR-FTIR spectra that the pectin components within cellular structure of bast tissue were easily removed and the debarked bast parts by a auto-scraping device were easily defiberized by 2-stage pulping sequence using potassium carbonate/sodium hydroxide pulping system.

Bio-Inspired Surface Modification of 3-Dimensional Polycaprolactone Scaffold for Enhanced Cellular Behaviors

  • 조선애;강성민;박수아;이해신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.202-202
    • /
    • 2011
  • The research of 3-dimensional (3-D) scaffold for tissue engineering has been widely investigated as the importance of the 3-D scaffold increased. 3-D scaffold is needed to support for cells to proliferate and maintain their biological functions. Furthermore, its architecture defines the shape of the new bone and cartilage growth. Polycaprolactone (PCL) has been one of the most promising materials for fabricating 3-D scaffold owing to its excellent mechanical property and biocompatibility. However, there are practical problems for using it, in vitro and in vivo; extracellular matrix components and nutrients cannot penetrate into the inner space of scaffold, due to its hydrophobic property, and thus cell seeding and attachment onto the inner surface remain as a challenge. Thus, the surface modification strategy of 3-D PCL scaffold is prerequisite for successful tissue engineering. Herein, we utilized a mussel-inspired approach for surface modification of 3-D PCL scaffold. Modification of 3-D PCL scaffolds was carried out by simple immersion of scaffolds into the dopamine solution and stimulated body fluid, and as a result, hydroxyapatite-immobilized 3-D PCL scaffolds were obtained. After surface modification, the wettability of 3-D PCL scaffold was considerably changed, and infiltration of the pre-osteoblastic cells into the 3-D scaffold followed by the attachment onto the surface was successfully achieved.

  • PDF

Design of Vision Based Punching Machine having Serial Communication

  • Lee, Young-Choon;Lee, Seong-Cheol;Kim, Seong-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2430-2434
    • /
    • 2005
  • Automatic FPC punching instrument for the improvement of working condition and cost saving is introduced in this paper. FPC(flexible printed circuit) is used to detect the contact position of K/B and button like a cellular phone. Depending on the quality of the printed ink and position of reference punching point to the FPC, the resistance and current are varied to the malfunctioning values. The size of reference punching point is 2mm and the above. Because the punching operation is done manually, the accuracy of the punching degree is varied with operator's condition. Recently, The punching accuracy has deteriorated severely to the 2mm punching reference hall so that assembly of the K/B has hardly done. To improve this manual punching operation to the FPC, automatic FPC punching system is introduced. Precise mechanical parts like a 5-step stepping motor and ball screw mechanism are designed and tested and low cost PC camera is used for the sake of cost down instead of using high quality vision systems for the FA. 3D Mechanical design tool(Pro/E) is used to manage the exact tolerance circumstances and avoid design failures. Simulation is performed to make the complete vision based punching machine before assembly, and this procedure led to the manufacturing cost saving. As the image processing algorithms, dilation, erosion, and threshold calculation is applied to obtain an exact center position from the FPC print marks. These image processing algorithms made the original images having various noises have clean binary pixels which is easy to calculate the center position of print marks. Moment and Least square method are used to calculate the center position of objects. In this development circumstance, Moment method was superior to the Least square one at the calculation of speed and against noise. Main control panel is programmed by Visual C++ and graphical Active X for the whole management of vision based automatic punching machine. Operating modes like manual, calibration, and automatic mode are added to the main control panel for the compensation of bad FPC print conditions and mechanical tolerance occurring in the case of punch and die reassembly. Test algorithms and programs showed good results to the designed automatic punching system and led to the increase of productivity and huge cost down to law material like FPC by avoiding bad quality.

  • PDF