• 제목/요약/키워드: cellular function

검색결과 1,363건 처리시간 0.025초

Transcription Factor EB-Mediated Lysosomal Function Regulation for Determining Stem Cell Fate under Metabolic Stress

  • Chang Woo Chae;Young Hyun Jung;Ho Jae Han
    • Molecules and Cells
    • /
    • 제46권12호
    • /
    • pp.727-735
    • /
    • 2023
  • Stem cells require high amounts of energy to replicate their genome and organelles and differentiate into numerous cell types. Therefore, metabolic stress has a major impact on stem cell fate determination, including self-renewal, quiescence, and differentiation. Lysosomes are catabolic organelles that influence stem cell function and fate by regulating the degradation of intracellular components and maintaining cellular homeostasis in response to metabolic stress. Lysosomal functions altered by metabolic stress are tightly regulated by the transcription factor EB (TFEB) and TFE3, critical regulators of lysosomal gene expression. Therefore, understanding the regulatory mechanism of TFEB-mediated lysosomal function may provide some insight into stem cell fate determination under metabolic stress. In this review, we summarize the molecular mechanism of TFEB/TFE3 in modulating stem cell lysosomal function and then elucidate the role of TFEB/TFE3-mediated transcriptional activity in the determination of stem cell fate under metabolic stress.

Mechanisms and Physiological Roles of Mitophagy in Yeast

  • Fukuda, Tomoyuki;Kanki, Tomotake
    • Molecules and Cells
    • /
    • 제41권1호
    • /
    • pp.35-44
    • /
    • 2018
  • Mitochondria are responsible for supplying of most of the cell's energy via oxidative phosphorylation. However, mitochondria also can be deleterious for a cell because they are the primary source of reactive oxygen species, which are generated as a byproduct of respiration. Accumulation of mitochondrial and cellular oxidative damage leads to diverse pathologies. Thus, it is important to maintain a population of healthy and functional mitochondria for normal cellular metabolism. Eukaryotes have developed defense mechanisms to cope with aberrant mitochondria. Mitochondria autophagy (known as mitophagy) is thought to be one such process that selectively sequesters dysfunctional or excess mitochondria within double-membrane autophagosomes and carries them into lysosomes/vacuoles for degradation. The power of genetics and conservation of fundamental cellular processes among eukaryotes make yeast an excellent model for understanding the general mechanisms, regulation, and function of mitophagy. In budding yeast, a mitochondrial surface protein, Atg32, serves as a mitochondrial receptor for selective autophagy that interacts with Atg11, an adaptor protein for selective types of autophagy, and Atg8, a ubiquitin-like protein localized to the isolation membrane. Atg32 is regulated transcriptionally and post-translationally to control mitophagy. Moreover, because Atg32 is a mitophagy-specific protein, analysis of its deficient mutant enables investigation of the physiological roles of mitophagy. Here, we review recent progress in the understanding of the molecular mechanisms and functional importance of mitophagy in yeast at multiple levels.

In Vitro Immunopotentiating Activity of Cellular Components of Lactococcus lactis ssp. lactis

  • Kim, Ji Yeon;Lee, Seong-Kyu;Ciiimura, Satoshi-Ha;Kaminogawa, Shuichi;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권2호
    • /
    • pp.202-206
    • /
    • 2003
  • To determine the effect of immunopotentiating activity of cellular components of Lactococcus lactis ssp. lactis, the immune function was analyzed in vitro using mice cells. When stimulated with mitogens, productions of $IFN-{\gamma}$, IL-12, $TNF-{\alpha}$, and IL-6 were enhanced in spleen cells treated with cellular components, with IL-4 production being the highest in spleen cells treated with cytoplasm fraction. Without mitogen stimulation, the productions of $IFN-{\gamma}$ and IL-12 were the highest in spleen cells treated with heat-killed whole cell. $TNF-{\alpha}$ and IL-6 productions were also high in spleen cells treated with all cellular components. Only heat-killed whole cell showed significant enhancement in natural killer cell activity. In peritoneal exudates cells, $TNF-{\alpha}$ production was enhanced significantly by all cellular components of Lactococcus lactis ssp. lactis These results indicate that the cellular components of Lactococcus lactis ssp. lactis are capable of stimulating immune cells to produce cytokines, and that both their cell walls and cytoplasm fraction contribute to these capacities.

휴대전화기 신제품 개발을 위한 컨조인트분석 (Conjoint Analysis for the Development of New Cellular Phone)

  • 김부용
    • 품질경영학회지
    • /
    • 제33권4호
    • /
    • pp.103-110
    • /
    • 2005
  • Advanced function has been considered to be the most important aspect of the cellular phone. However, leading companies are now implementing the fashion branding strategy which stresses both high technology and appealing design. By means of the conjoint analysis, this research focuses on identifying the preferred design profile related to style of the key cover, color and texture of the case, and presence or absence of the noctilucent material coated on the part of surface. We also evaluate the relative importance of factors to determine the design concept of new cellular phone. Results indicate that consumers most prefer the silver-colored, sliding key cover phone with soft and noctilucent surface.

"25-kDa Thiol Peroxidase" (TPx II) Acts as a "Housekeeping" Antioxidant

  • Cha, Mee-Kyung;Kim, II-Han
    • BMB Reports
    • /
    • 제32권5호
    • /
    • pp.506-510
    • /
    • 1999
  • The newly-found thiol peroxidases (TPx) with a conserved cysteine as the primary site of catalysis are capable of catalyzing the thiol-dependent reduction of peroxides. However, the cellular distributions of the isoforms remain poorly understood. As a first step in understanding the physiological functions of the TPx isoforms, we examined the cellular and tissue distribution of the isoenzymes in various bovine tissues. The tissue distributions of TPx isoenzymes indicate that two types of TPx are widely distributed throughout all of the tested tissues. These two forms are the predominant proteins, with levels of the proteins being quite different from each other. The level of predominant TPx proteins, named type II (TPx II) and type V (TPx V), appeared to be very different with respect to tissue type. The cellular distribution and level of TPx isoenzymes also varied with the types of cells. Immunoblot analysis of the mitochondrial and cytosol fractions from various tissues indicates that TPx III is a unique mitochondrial form. Based on the different tissue and cellular distribution of TPx isoenzymes, we discuss the physiological function of TPx isoenzymes, especially the ubiquitous TPx II.

  • PDF

The Role of Nrf2 in Cellular Innate Immune Response to Inflammatory Injury

  • Kim, Ji-Young;Surh, Young-Joon
    • Toxicological Research
    • /
    • 제25권4호
    • /
    • pp.159-173
    • /
    • 2009
  • Nuclear factor erythroid derived 2-related factor-2 (Nrf2) is a master transcription regulator of antioxidant and cytoprotective proteins that mediate cellular defense against oxidative and inflammatory stresses. Disruption of cellular stress response by Nrf2 deficiency causes enhanced susceptibility to infection and related inflammatory diseases as a consequence of exacerbated immune-mediated hypersensitivity and autoimmunity. The cellular defense capacity potentiated by Nrf2 activation appears to balance the population of $CD4^+$ and $CD8^+$ of lymph node cells for proper innate immune responses. Nrf2 can negatively regulate the activation of pro-inflammatory signaling molecules such as p38 MAPK, NF-${\kappa}B$, and AP-1. Nrf2 subsequently functions to inhibit the production of pro-inflammatory mediators including cytokines, chemokines, cell adhesion molecules, matrix metalloproteinases, COX-2 and iNOS. Although not clearly elucidated, the antioxidative function of genes targeted by Nrf2 may cooperatively regulate the innate immune response and also repress the expression of pro-inflammatory mediators.