• Title/Summary/Keyword: cellular function

Search Result 1,351, Processing Time 0.026 seconds

Investigation of Possible Horizontal Gene Transfer from the Leaf Tissue of Transgenic Potato to Soil Bacteria

  • KIM YOUNG TAE;KIM SUNG EUN;PARK KI DUK;KANG TAE HOON;LEE YUN MI;LEE SANG HAN;MOON JAE SUN;KIM SUNG UK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1130-1134
    • /
    • 2005
  • To monitor the possibility of horizontal gene transfer between transgenic potato and bacteria in the environment, the gene flow from glufosinate-tolerant potato to bacteria in soils was investigated. The soil samples treated with the leaf tissue of either glufosinate-tolerant or glufosinate-sensitive potato were subjected to PCR and Southern hybridization to determine possible occurrence of glufosinate-resistant soil bacteria and to detect the bar (phosphinothricin acetyltransferase) gene, conferring tolerance to glufosinate. The bar gene was not detected from genomic DNAs extracted at different time intervals from the soil samples, which had been treated with the leaf tissue of either transgenic or non-transgenic potato for 2 to 8 weeks. In addition, the level of glufosinate-resistant bacteria isolated from the soil samples treated with the leaf tissue of transgenic potato was similar to that of the samples treated with non-transgenic potato after 4 months of incubation at $25^{\circ}C$. The bar gene was not detected in the genomic DNAs extracted from colonies growing on the plate containing glufosinate, indicating that the bacteria could acquire the resistant phenotype to glufosinate by another mechanism without the uptake of the bar gene from glufosinate-tolerant potato.

Investigation of Possible Gene Transfer to Soil Microorganisms for Environmental Risk Assessment of Genetically Modified Organisms

  • Kim, Young-Tae;Park, Byoung-Keun;Hwang, Eui-Il;Yim, Nam-Hui;Kim, Na-Rae;Kang, Tae-Hoon;Lee, Sang-Han;Kim, Sung-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.498-502
    • /
    • 2004
  • The current study was conducted to monitor the possibility of the gene transfer among soil bacteria, including the effect of drift due to rain and surface water, in relation to the release of genetically modified organisms into the environment. Four types of bacteria, each with a distinct antibiotic marker, kanamycin-resistant P. fluorescens, rifampicin-resistant P. putida, chloramphenicol-resistant B. subtilis, and spectinomycin-resistant B. subtilis, were plated using a small-scale soil-core device designed to track drifting microorganisms. After three weeks of culture in the device, no Pseudomonas colonies resistant to both kanamycin and rifampicin were found. Likewise, no Bacillus colonies resistant to both chloramphenicol and spectinomycin were found. The gene transfer from glyphosate-tolerant soybeans to soil bacteria, including Rhizobium spp. as a symbiotic bacteria, was examined by hybridization using the DNA extracted from soil taken from pots, in which glyphosate-tolerant soybeans had been growing for 6 months. The results showed that 35S, T-nos, and EPSPS were observed in the positive control, but not in the DNA extracted from the soilborne microorganisms. In addition, no transgenes, such as the 35S promoter, T-nos, and EPSPS introduced into the GMO soybeans were detected in soilborne bacteria, Rhizobium leguminosarum, thereby strongly rejecting the possibility of gene transfer from the GMO soybeans to the bacterium.

A Hash Function Based on 2D Cellular Automata (이차원 셀룰라 오토마타에 기반하는 해쉬 함수)

  • Kim Jae-Gyeom
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.5
    • /
    • pp.670-678
    • /
    • 2005
  • A Cellular Automaton(CA) is a dynamical system in which space and time are discrete, the state of each cell is unite and is updated by local interaction. Since the characteristics of CA is diffusion and local interaction, CA is used by crypto-systems and VLSI structure. In this study, we proposed a hash function based on the concept of 2-dimensional cellular automata and analyzed the proposed hash function.

  • PDF

A Novel Watermarking using Cellular Automata Transform (셀룰러 오토마타 변환을 이용한 새로운 워터마킹)

  • Piao, Yong-Ri;Kim, Seok-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.155-158
    • /
    • 2008
  • In this paper, we propose a novel blind watermarking Method using 2D CAT (Two dimensional cellular automata transform). In our scheme, firstly, we obtain the gateway values to generate a dual-state, dual-coefficients basis function. Secondly, the basis function transforms images into cellular automata space. Lastly, we use the cellular automata transform coefficients to embed random noise watermark in the cover images. The proposed scheme allows only one 2D CAT basis function per gateway value. Since there are $2^{96}$ possible gateway values, better security is guaranteed. Moreover, the new method not only verifies higher fidelity than the existing method but also stronger stability on JPEG lossy compression, filtering, sharpening and noise through tests for robustness.

  • PDF

A Case Study on Improving Body Homeostasis Using Ortho-cellular Nutrition Therapy (OCNT) (세포교정영양요법(OCNT)을 이용한 신체의 항상성 개선 사례 연구)

  • Eunah Hong
    • CELLMED
    • /
    • v.14 no.4
    • /
    • pp.73.1-73.4
    • /
    • 2024
  • Objective: Case study on improving body homeostasis by ortho-cellular nutrition therapy. Methods: A 48-year-old Korean man underwent OCNT due to symptoms of insomnia and decreased physical function due to extreme chronic stress. Results: After exposure to OCNT, fatigue, sleep quality, and brain fog symptoms improved, and overall physical performance improved, including liver function recovery. Conclusion: For people who suffer from symptoms of decreased physical function in various aspects due to extreme stress, applying OCNT can help alleviate symptoms.

D2D Power Control in the Cellular System: Iterative Algorithm and Convergence

  • Oh, Changyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.41-47
    • /
    • 2017
  • In this paper, we consider the case where D2D users and the cellular user share the uplink of the cellular system. We propose an iterative power control algorithm that converges to the optimum power value. Each user iteratively updates its transmit power level according to the interference function. Finally, all D2D users and cellular user that participate in the transmission get the optimum transmit power level. We first investigate the interference structure and define the interference function. Then, we show that the considered interference function belongs to the standard interference function that converges the unique transmit power level. Through numerical examples, the convergence of the proposed power control algorithm is examined in the various transmission scenarios.

Myosin X and Cytoskeletal Reorganization

  • Ikebe, Mitsuo;Sato, Osamu;Sakai, Tsuyoshi
    • Applied Microscopy
    • /
    • v.48 no.2
    • /
    • pp.33-42
    • /
    • 2018
  • Myosin X is one of myosin superfamily members having unique cellular functions on cytoskeletal reorganization. One of the most important cellular functions of myosin X is to facilitate the formation of membrane protrusions. Since membrane protrusions are important factors for diverse cellular motile processes including cell migration, cell invasion, path-finding of the cells, intercellular communications and so on, it has been thought that myosin X plays an important role in various processes that involve cytoskeletal reorganization including cancer progression and development of neuronal diseases. Recent studies have revealed that the unique cellular function of myosin X is closely correlated with its unique structural characteristics and motor properties. Moreover, it is found that the molecular and cellular activities of myosin X are controlled by its specific binding partner. Since recent studies have revealed the presence of various specific binding partners of myosin X, it is anticipated that the structural, biochemical and cell biological understanding of the binding partner dependent regulation of myosin X function can uncover the role of myosin X in diverse cell biological processes and diseases.

Effect of electromagnetic field exposure on the reproductive system

  • Gye, Myung-Chan;Park, Chan-Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • The safety of human exposure to an ever-increasing number and diversity of electromagnetic field (EMF) sources both at work and at home has become a public health issue. To date, many in vivo and in vitro studies have revealed that EMF exposure can alter cellular homeostasis, endocrine function, reproductive function, and fetal development in animal systems. Reproductive parameters reported to be altered by EMF exposure include male germ cell death, the estrous cycle, reproductive endocrine hormones, reproductive organ weights, sperm motility, early embryonic development, and pregnancy success. At the cellular level, an increase in free radicals and $[Ca^{2+}]i$ may mediate the effect of EMFs and lead to cell growth inhibition, protein misfolding, and DNA breaks. The effect of EMF exposure on reproductive function differs according to frequency and wave, strength (energy), and duration of exposure. In the present review, the effects of EMFs on reproductive function are summarized according to the types of EMF, wave type, strength, and duration of exposure at cellular and organism levels.

Digital Watermarking using Multi-resolution Characteristic of 2D Cellular Automata Transform (다 해상도 특성을 갖는 2D 셀룰러 오토마타 변환을 이용한 디지털 워터마킹)

  • Piao, Yong-Ri;Kim, Seok-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.105-112
    • /
    • 2009
  • In this paper, we propose a digital watermarking method using Multi-resolution Characteristic of 2D CAT (2D cellular automata transform). Firstly, we select the gateway values to generate a basis function and the basis function transforms images into cellular automata space. Then, we embed the random bit sequence as watermark in specific parts of cellular automata transform coefficients. The proposed method not only verifies higher fidelity than the existing method but also stronger stability on JPEG lossy compression, filtering, sharpening and noise through tests for robustness. Moreover, the proposed scheme allows only one 2D CAT basis function per gateway value. Since there are $2^{96}$ possible gateway values.

A Novel Image Encryption using MLCA and CAT (MLCA와 CAT를 이용한 새로운 영상 암호화 방법)

  • Piao, Yong-Ri;Cho, Sung-Jin;Kim, Seok-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2171-2179
    • /
    • 2009
  • In this paper, we propose a novel Image Encryption using MLCA (Maximum Length Cellular Automata) and CAT (Cellular Automata Transform). Firstly, we use the Wolfram rule matrix to generate MLCA state transition matrix T. Then the state transition matrix T changes pixel value of original image according to pixel position. Next, we obtain Gateway Values to generate 2D CAT basis function. Lastly, the basis function encrypts the MLCA encrypted image into cellular automata space. The experimental results and security analysis show that the proposed method guarantees better security and non-lossy encryption.