• Title/Summary/Keyword: cellular communication

Search Result 842, Processing Time 0.024 seconds

Interference Coordination for Device-to-Device (D2D) under Multi-channel of Cellular Networks

  • Zulkifli, Aunee Azrina;Huynh, Thong;Kuroda, Kaori;Hasegawa, Mikio
    • Journal of Multimedia Information System
    • /
    • v.3 no.4
    • /
    • pp.135-140
    • /
    • 2016
  • To improve the throughput of Device-to-Device (D2D) communication, we focus on the scenario where D2D pair can reuse multi-channel of cellular communication. However, as sharing same channel with cellular communication can cause interference between D2D communication and cellular communication, a proper interference management is needed. In this paper, we propose interference-based channel allocation to select the channels to be used by D2D communication and a solution from game theory perspective to optimize the D2D communication throughput under multi-channel as well as guarantee the interference from it to cellular network. The simulation results verify the stability of the proposed method.

Power Allocation for Half-duplex Relay-based D2D Communication with QoS guarantee

  • Dun, Hui;Ye, Fang;Jiao, Shuhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1311-1324
    • /
    • 2019
  • In the traditional cellular network communication, the cellular user and the base station exchange information through the uplink channel and downlink channel. Meanwhile, device-to-device (D2D) users access the cellular network by reusing the channel resources of the cellular users. However, when cellular user channel conditions are poor, not only D2D user cannot reuse its channel resources to access the network, but also cellular user's communication needs cannot be met. To solve this problem, we introduced a novelty D2D communication mechanism in the downlink, which D2D transmitter users as half-duplex (HD) relays to assist the downlink transmission of cellular users with reusing corresponding spectrum. The optimization goal of the system is to make the cellular users in the bad channel state meet the minimum transmission rate requirement and at the same time maximize the throughput of the D2D users. In addition, i for the purpose of improving the efficiency of relay transmission, we use two-antenna architecture of D2D relay to enable receive and transmit signals at the same time. Then we optimized power of base station and D2D relay separately with consideration of backhaul interference caused by two-antenna architectures. The simulation results show that the proposed HD relay strategyis superior to existing HD and full-duplex (FD) models in the aspects of system throughput and power efficiency.

Motivations for Cellular Phone Uses and Parent-Children Communication by Gender among Middle School Students (중학생의 휴대전화 이용 동기 및 성별에 따른 부모와의 의사소통 수준)

  • Cheon, Hye-Jung;Lee, Jung-Eun
    • Journal of Families and Better Life
    • /
    • v.24 no.5 s.83
    • /
    • pp.101-112
    • /
    • 2006
  • This study examined factors related to the motivation for the uses of cellular phones and the relationship between motivation for cellular phone use and parent-child communication among middle school students. A total of 223 questionnaires were submitted and analyzed. The characteristics of motive structure of the middle school students were found as recreation, time management, information-seeking, reassurance and fashion/showing off. Among those motivations, these middle school students examined here were found to use cellular phones in similar ways to how conventional telephone is used such as work/instrumental reasons and socializing/entertaining. The motivations showed a significant association with the level of parent-child communication. Information-seeking and time management motivation were positively related with an open communication level while fashion/showing off and recreation were negatively related with an open communication level.

A D2D communication architecture under full control using SDN

  • Ngo, Thanh-Hai;Kim, Younghan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3435-3454
    • /
    • 2016
  • Device-to-device (D2D) communication is a potential solution to the incessant increase in data traffic on cellular networks. The greatest problem is how to control the interference between D2D users and cellular mobile users, and between D2D users themselves. This paper proposes a solution for this issue by putting the full control privilege in cellular network using the software-defined networking (SDN) concept. A software virtual switch called Open vSwitch and several components are integrated into mobile devices for data forwarding and radio resource mapping, whereas the control functions are executed in the cellular network via a SDN controller. This allows the network to assign radio resources for D2D communication directly, thus reducing interference. This solution also brings out many benefits, including resource efficiency, energy saving, topology flexibility, etc. The advantages and disadvantages of this architecture are analyzed by both a mathematical method and a simple implementation. The result shows that implementation of this solution in the next generation of cellular networks is feasible.

Estimating the access demand funciton of the celluar communication service (셀룰러 통신 서비스의 수요 함수 추정)

  • 이영용;강국창;오형식
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.324-327
    • /
    • 1996
  • In this paper, the affecting factors of the access demand for the cellular service are derived, and the access demand function of the cellular service is estimated. The results obtained in this study are as follows: First, the price (access charge) and the income elasticities of cellular services there exists a network externality in cellular communication services. Third, the technological capability of the service provider has played an essential role in expanding the size of subscribers. Fourth, the access demand of cellular communication service is not sensitive to the usage charge. According to the above results, it can be inferred that if the access charge is lowered, the number if subscribers will increase to the critical mass, and then the cellular communication market will grow up to a saturation point naturally.

  • PDF

Joint Spectrum and Power Allocation for Green D2D Communication with Physical Layer Security Consideration

  • Chen, Hualiang;Cai, Yueming;Wu, Dan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1057-1073
    • /
    • 2015
  • In this paper, we consider cooperative D2D communications in cellular networks. More precisely, a cellular user leases part of its spectrum to facilitate the D2D communication with a goal of improving the energy efficiency of a D2D pair. However the D2D pair is untrusted to the cellular user, such resource sharing may result in the information of this cellular user unsecured. In order to motivate the cellular user's generosity, this D2D pair needs to help the cellular user maintain a target secrecy rate. To address this issue, we formulate a joint spectrum and power allocation problem to maximize the energy efficiency of the D2D communication while guaranteeing the physical layer security of the cellular user. Then, a theorem is proved to indicate the best resource allocation strategy, and accordingly, an algorithm is proposed to find the best solution to this resource allocation problem. Numerical results are finally presented to verify the validity and effectiveness of the proposed algorithm.

Joint Mode Selection, Link Allocation and Power Control in Underlaying D2D Communication

  • Zhang, Wei;He, Wanbing;Wu, Dan;Cai, Yueming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5209-5228
    • /
    • 2016
  • Device-to-device (D2D) communication underlaying cellular networks can bring significate benefits for improving the performance of mobile services. However, it hinges on elaborate resource sharing scheme to coordinate interference between cellular users and D2D pairs. We formulate a joint mode selection, link allocation and power control optimization problem for D2D communication sharing uplink resources in a multi-user cellular network and consider the efficiency and the fairness simultaneously. Due to the non-convex difficulty, we propose a three-step scheme: firstly, we conduct mode selection for D2D pairs based on a minimum distance metric after an admission control and obtain some cellular candidates for them. And then, a cellular candidate will be paired to each D2D pair based on fairness. Finally, we use Lagrangian Algorithm to formulate a joint power control strategy for D2D pairs and their reused cellular users and a closed-form of solution is derived. Simulation results demonstrate that our proposed algorithms converge in a short time. Moreover, both the sum rate of D2D pairs and the energy efficiency of cellular users are improved.

Capacity Enhancement of Uni-directional In-band Full-Duplex Cellular Networks through Co-channel Interference Cancellation

  • Ju, Hyungsik;Gwak, Donghyuk;Kim, Sun-Ae;Lee, Yuro;Kim, Tae-Joong
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.207-217
    • /
    • 2018
  • As implementation of the in-band full duplex (IFD) transceiver becomes feasible, research interest is growing with respect to using IFD communication with cellular networks. However, the cellular network in which the IFD communication is applied inevitably suffers from an increase of the co-channel interference (CCI) due to IFD simultaneous transmission and reception. In this paper, we analyze the performance of a cellular network based on uni-directional IFD (UD-IFD) communication, wherein an IFD base station simultaneously supports downlink and uplink transmissions of half-duplex (HD) users. In addition, a multi-pair CCI cancellation (MP-CCIC) method combining CCIC and user pairing is proposed to improve the performance of the UD-IFD network. Simulation results showed that, compared to a conventional HD cellular network without using CCIC, capacity gain was not obtained in the UD-IFD cellular network. On the other hand, when applying the proposed MP-CCIC, the capacity of the UD-IFD cellular network greatly improved compared to that of an HD cellular network.

Joint Resource Allocation for Cellular and D2D Multicast Based on Cognitive Radio

  • Wu, Xiaolu;Chen, Yueyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.91-107
    • /
    • 2014
  • Device-to-device (D2D) communication is an excellent technology to improve the system capacity by sharing the spectrum resources of cellular networks. Multicast service is considered as an effective transmission mode for the future mobile social contact services. Therefore, multicast based on D2D technology can exactly improve the spectrum resource efficiency. How to apply D2D technology to support multicast service is a new issue. In this paper, a resource allocation scheme based on cognitive radio (CR) for D2D underlay multicast communication (CR-DUM) is proposed to improve system performance. In the cognitive cellular system, the D2D users as secondary users employing multicast service form a group and reuse the cellular resources to accomplish a multicast transmission. The proposed scheme includes two steps. First, a channel allocation rule aiming to reduce the interference from cellular networks to receivers in D2D multicast group is proposed. Next, to maximize the total system throughput under the condition of interference and noise impairment, we formulate an optimal transmission power allocation jointly for the cellular and D2D multicast communications. Based on the channel allocation, optimal power solution is in a closed form and achieved by searching from a finite set and the interference between cellular and D2D multicast communication is coordinated. The simulation results show that the proposed method can not only ensure the quality of services (QoS), but also improve the system throughput.

Device-to-Device Communication Underlaying Cellular Networks: Connection Establishment and Interference Avoidance

  • Xu, Shaoyi;Wang, Haiming;Chen, Tao;Peng, Tao;Kwak, Kyung-Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.203-228
    • /
    • 2012
  • It is expected that device-to-device (D2D) communication is allowed to underlay future cellular networks such as IMT-Advanced for spectrum efficiency. This article studies the mechanisms of D2D communication and interference avoidance when the D2D subsystem reuses uplink resources and downlink spectrums with a cellular system, respectively. We firstly propose an effective scheme to establish and maintain D2D communication. Moreover, a novel method to deal with the resource allocation and interference avoidance issues by utilizing the network peculiarity of a hybrid network to share the uplink resource is proposed. Most research focuses on reusing the uplink spectrums, but how to share the downlink frequency bands is seldom addressed. To share the downlink spectrums and avoid the interference to the primary cellular devices, a labeled time slots based mechanism is proposed. Implementation details are described in a real cellular system and simulation results prove that satisfying performance can be achieved by using the proposed mechanisms.