• Title/Summary/Keyword: cell-recycle

Search Result 77, Processing Time 0.026 seconds

The Results of the 125 kW External Reforming Type MCFC Stack Operation (125kW 외부개질 용융탄산염 연료전지(ER MCFC) 스택 운전)

  • Lee, Jung-Hyun;Kim, Beom-Joo;Kim, Do-Hyeong;Kang, Seung-Won;Kim, Eui-Hwan;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.419-424
    • /
    • 2010
  • The 125kW external reforming (ER) type molten carbonate fuel cell (MCFC) system for developing a commercial prototype has been operated at Boryeong thermal power plant site since the end of 2009. The system consists of 125kW stack with $10,000 cm^2$ effective area, mechanical balance of plant (MBOP) with anode recycle system, and electrical balance of plant (EBOP). The 125kW MCFC stack installed in December, 2009 has been operated from January, 2010 after 20 days pre-treatment. The stack open circuit voltage (OCV) was 214V at initial load operation, which approaches the thermodynamically theoretical voltage. The stack voltage remained stable range from 160V to 180V at the maximum generating power of 120 kW DC. The stack has been operated for 3,270 hours and operated at rated power for 1,200 hours.

Improved modeling of non-hepatic cellular uptake and degradation of low density lipoprotein

  • Im, Gwang-Hui;Lee, Eun-Ju
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.524-527
    • /
    • 2002
  • An improved mathematical/kinetic model is proposed to describe receptor-mediated uptake and its degradation of LDL on human fibroblasts. The hierarchy of kinetic models is presented, which leads to the model introducing the parameter of degree of preferential insertion of recy치ed receptors to the surface of cell membrane. The results of its prediction were presented in various types of experimental and in various LDL concentrations. Its ability to predict Brown and Goldstein’s ample experimental data was excellent.

  • PDF

Study on PEM-Fuel-Cell Humidification System Consisting of Membrane Humidifier and Exhaust Air Recirculation Units (막가습기와 공기극 재순환을 사용한 고분자 전해질 연료전지의 가습특성 해석)

  • Byun, Su-Young;Kim, Beom-Jun;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.337-344
    • /
    • 2011
  • The humidification of reactant gases is crucial for efficiently operating PEM (polymer electrolyte membrane) fuel cell systems and for improving the durability of these systems. The recycle of the energy and water vapor of exhaust gas improves the system performance especially in the case of automotive application. The available humidification methods are steam injection, nozzle spray, humidification by enthalpy wheel, membrane humidifier, etc. However, these methods do not satisfy certain requirements such as compact design, efficient operation and control. In this study, a hybrid humidification system consisting of a membrane humidifier and exhaust-air recirculation units was developed and the humidification performance of this hybrid humidifier was analyzed. Finally, a new practical method for optimal design of PEM-fuel-cell humidification system is proposed.

Effective Liquid-phase Nitration of Benzene Catalyzed by a Stable Solid Acid Catalyst: Silica Supported Cs2.5H0.5PMo12O40

  • Gong, Shu-Wen;Liu, Li-Jun;Zhang, Qian;Wang, Liang-Yin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1279-1284
    • /
    • 2012
  • Silica supported $Cs_{2.5}H_{0.5}PMo_{12}O_{40}$ catalyst was prepared through sol-gel method with ethyl silicate-40 as silicon resource and characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen adsorption-desorption and potentiometric titration methods. The $Cs_{2.5}H_{0.5}PMo_{12}O_{40}$ particles with Keggin-type structure well dispersed on the surface of silica, and the catalyst exhibited high surface area and acidity. The catalytic performance of the catalysts for benzene liquid-phase nitration was examined with 65% nitric acid as nitrating agent, and the effects of various parameters were tested, which including temperature, time and amount of catalyst, reactants ratio, especially the recycle of catalyst was emphasized. Benzene was effectively nitrated to mononitro-benzene with high conversion (95%) in optimized conditions. Most importantly, the supported catalyst was proved has excellent stability in the nitration progress, and there were no any other organic solvent and sulfuric acid were used in the reaction system, so the liquid-phase nitration of benzene that we developed was an eco-friendly and attractive alternative for the commercial technology.

Optimization of Operating Conditions for a 10 kW SOFC System (10kW급 건물용 고체산화물연료전지(SOFC) 시스템 모델을 이용한 운전조건 최적화 연구)

  • LEE, YULHO;YANG, CHANUK;YANG, CHOONGMO;PARK, SANGHYUN;PARK, SUNGJIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.49-62
    • /
    • 2016
  • In this study, a solid oxide fuel cell (SOFC) system model including balance of plant (BOP) for building electric power generation is developed to study the effect of operating conditions on the system efficiency and power output. SOFC system modeled in this study consists of three heat-exchangers, an external reformer, burner, and two blowers. A detailed computational cell model including internal reforming reaction is developed for a planer SOFC stack which is operated at intermediate temperature (IT). The BOP models including an external reformer, heat-exchangers, a burner, blowers, pipes are developed to predict the gas temperature, pressure drops and flow rate at every component in the system. The SOFC stack model and BOP models are integrate to estimate the effect of operating parameters on the performance of the system. In this study, the design of experiment (DOE) is used to compare the effects of fuel flow rate, air flow rate, air temperature, current density, and recycle ratio of anode off gas on the system efficiency and power output.

The Ejector Design and Test for 5kW MCFC System (5kW 용융탄산염 연료전지(MCFC) 이젝터 설계 및 시험)

  • Kim, Beom-Joo;Kim, Do-Hyeong;Lee, Jung-Hyun;Lee, Sung-Yoon;Kim, Jin-Yoel;Kang, Seung-Won;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.1
    • /
    • pp.31-37
    • /
    • 2009
  • An ejector is a machine utilized for mixing fluid, maintaining a vacuum, and transporting fluid. The Ejector enhances system efficiency, are easily operated, have a mechnically simple structure, and do not require a power supply. Because of these advantages, the ejector has been applied to a variety of industrial fields such as refrigerators, power plants and oil plants. In this work, an ejector was used to safely recycle anode tail gas in a 5 kW Molten Carbonate Fuel Cell system at KEPRI(Korea Electric Power Research Institute). In this system, the ejector is placed at mixing point between the anode tail gas and the cathode tail gas or the fresh air. Commercial ejectors are not designed for the actual operating conditions for our fuel cell system. A new ejector was therefore designed for use beyond conventional operating limits. In this study, the entrainment ratio is measured according to the diametrical ratio of nozzle to throat in the designed ejector. This helps to define important criteria of ejectors for MCFC recycling.

Measurement and Analysis of Coal Conversion Efficiency for a Coal Recirculating Fuel Cell Simulator (석탄순환형 연료전지 모사시스템용 석탄전환율 측정 및 분석법개발에 관한 연구)

  • Lee, Sangcho;Kim, Chihwan;Hwang, Munkyeong;kim, Minseong;Kim, Kyubo;Jeon, Chunghwan;Song, Juhun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.503-512
    • /
    • 2012
  • There is a new power generation system such as direct coal fuel cell (DCFC) with a solid oxide electrolyte operated at relatively high temperature. In the system, it is of great importance to feed coal continuously into anodic electrode surface for its better contact, otherwise it would reduce electrochemical conversion of coal. For that purpose, it is required to improve the electrochemical conversion efficiency by using either rigorous mixing condition such as fluidized bed condition or just by recirculating coal particle itself successively into the reaction zone of the system. In this preliminary study, we followed the second approach to investigate how significantly particle recycle would affect the coal conversion efficiency. As a first phase, coal conversion was analyzed and evaluated from the thermochemical reaction of carbon with air under particle recirculating condition. The coal conversion efficiency was obtained from raw data measured by two different techniques. Effects of temperature and fuel properties on the coal conversion are specifically examined from the thermochemical reaction.

System Development of a 100 kW Molten Carbonate Fuel Cell III (System Control and Operation Mode) (100 kW급 용융탄산염 연료전지 시스템 개발 III (시스템 제어 및 운전모드))

  • Lim, Hee-Chun;Ahn, Kyo-Sang;Seo, Hai-Kyung;Eom, Yeong-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1350-1352
    • /
    • 2003
  • For developing a 100 kW MCFC power generation system, Several design parameters for a fuel cell stack and system analysis results by Cycle Tempo, a processing computer soft ware, were described. Approximately two substacks with 90 cells are required to generate 100 kW at a current density of $125\;mA/cm^2$ with $6000\;cm^2$ of cells. An overall heat balance was calculated to predict exit temperature. The 100 kW power is expected only under pressurized operation condition at 3 atm. Recycle of cathode gas by more than 50% is recommended to run the stack at $125\;mA/cm^2$ and 3 atm. Manifolds should be designed based on gas flow rates for the suggested operating condition. The fuel cell power generation system was designed conceptually with several choices of utilization of anode exhaust gas. To operate and evaluate the MCFC system, control and measurement system and operation mode are designed before 100 MCFC system construction. In system control schematics, OS, PLC and MMI were consisted and have roles for MCFC system control. For operation of 100 kW MCFC system, NS, PS PR mode were considerated step by step and simulated.

  • PDF

Simulation and Control of the Molten Carbonate System using Aspen $Dynamics^{TM}$ and ACM (Aspen $Dynamics^{TM}$와 ACM을 이용한 용융탄산염 연료전지 시스템의 모사 및 제어)

  • Jeon, Kyoung Yein;Kwak, Ha Yeon;Kyung, Ji Hyun;Yoo, Ahrim;Lee, Tae Won;Lee, Gi Pung;Moon, Kil Ho;Yang, Dae Ryook
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.423-431
    • /
    • 2011
  • Recentincreasing awareness of the environmental damage caused by the $CO_2$ emission of fossil fuelsstimulated the interest in alternative and renewable sources of energy. Fuel cell is a representative example of hydrogen energy utilization. In this study, Molten Carbonate Fuel Cell system is simulated by using $Aspen^{TM}$. Stack model is consisted of equilibrium reaction equations using $ACM^{TM}$(Aspen Custom Modeler). Balance of process of fuel cell system is developed in Aspen $Plus^{TM}$ and simulated at steady-state. Analysis of performance of the system is carried out by using sensitivity analysis tool with main operating parameters such as current density, S/C ratio, and fuel utilization and recycle ratio.In Aspen $Dynamics^{TM}$, dynamics of MCFC system is simulated with PID control loops. From the simulation, we proposed operation range which generated maximum power and efficiency in MCFC power plant.

Electrochemical Behaviors of Graphite/LiNi0.6Co0.2Mn0.2O2 Cells during Overdischarge (흑연과 LiNi0.6Co0.2Mn0.2O2로 구성된 완전지의 과방전 중 전기화학적 거동분석)

  • Bong Jin Kim;Geonwoo Yoon;Inje Song;Ji Heon Ryu
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • As the use of lithium-ion secondary batteries is rapidly increasing due to the rapid growth of the electric vehicle market, the disposal and recycling of spent batteries after use has been raised as a serious problem. Since stored energy must be removed in order to recycle the spent batteries, an effective discharging process is required. In this study, graphite and NCM622 were used as active materials to manufacture coin-type half cells and full cells, and the electrochemical behavior occurring during overdischarge was analyzed. When the positive and negative electrodes are overdischarged respectively using a half-cell, a conversion reaction in which transition metal oxide is reduced to metal occurs first in the positive electrode, and a side reaction in which Cu, the current collector, is corroded following decomposition of the SEI film occurs in the negative electrode. In addition, a side reaction during overdischarge is difficult to occur because a large polarization at the initial stage is required. When the full cell is overdischarged, the cell reaches 0 V and the overdischarge ends with almost no side reaction due to this large polarization. However, if the full cell whose capacity is degraded due to the cycle is overdischarged, corrosion of the Cu current collector occurs in the negative electrode. Therefore, cycled cell requires an appropriate treatment process because its electrochemical behavior during overdischarge is different from that of a fresh cell.