• 제목/요약/키워드: cell-promoting activity

검색결과 223건 처리시간 0.031초

Growth Promoting Effects of Oriental Medicinal Drugs on Sciatic Nerve Regeneration in the Rat

  • Jo Hyun-Kyung;NamGung Uk;Seol In-Chan;Kim Yoon-Sik
    • 동의생리병리학회지
    • /
    • 제19권6호
    • /
    • pp.1666-1672
    • /
    • 2005
  • Oriental medicinal drugs have a broad spectrum of clinical use for the cure of nervous system diseases including brain ischemic damages or neuropathies. Yet, specific drugs or drug components used in the oriental medicine in relation to none fiber regeneration are not known. In the present study, possible growth promoting effects of oriental medicinal drugs were investigated in the injured sciatic nerve system in the rat. By immunofluorescence staining, we found that Jahageo (JHG, Hominis placenta) increased Induction levels of axonal growth associated protein GAP-43 in the rat sciatic none. Small growth promoting activity was found in Golsebo (GSB, Drynariae rhizoma) and Baikhasuo (BHSO, Polygoni multiflori radix) drugs. JHG also increased cell cycle protein Cdc2 levels in the injured area of the sciatic nerves. Immunofluorescence staining indicated that induced Cdc2 protein was mostly localized in the Schwann cells in the injury area, implying that JHG activity might be related to increased Schwann cell proliferation during axonal regeneration. Moreover, levels of phospho-extracellular signal-regulated (ERK) pathway in the injured neNes were elevated by JHG treatment while levels of total ERK were unaltered. In vivo measurement of axonal regeneration using retrograde tracer showed that JHG, GSB and BHSO significantly enhanced Dil-labeled regenerating motor neurons compared with saline control. The present data suggest that oriental medicinal drugs such as JHG, GSB, and BHSO may be a useful target for developing specific drugs of axonal regeneration.

생물방제능과 식물성장촉진능을 동시에 가지는 Bacillus licheniformis K11의 non-siderophore 항진균 물질 및 cellulase의 생산조건 확인 (Confirmation of Non-Siderophore Antifugal Substance and Cellulase from Bacillus lichemiformis Kll Containing Antagonistic Ability and Plant Growth Promoting Activity)

  • 우상민;김상달
    • 생명과학회지
    • /
    • 제17권7호통권87호
    • /
    • pp.983-989
    • /
    • 2007
  • Auxin, siderophore, 그리고 cellulase를 동시에 생산하는 생물방제균주 B. licheniformis Kll을 식물병원성진균을 대상으로 균사 성장억제능을 확인결과 6종의 식물병원성 진균에서 균사체 성장억제능을 확인하였으며, 그 중에서 토마토 시들음병을 유발하는 F. oxysporum(KACC 40037)에 가장 강력한 억제능을 나타내었다. 그리고 본 균주가 생산하는 항진균성 siderophore이외에 세포벽이 cellulose로 구성된 P. capsici의 cell wall을 분해하는 cellulase를 생산하는 것을 추가적으로 확인하였다. 뿐만아니라 B. licheniformis Kll은 nutrient broth(pH 8.0), $30{\circ}C$에서 96시간 배양시 토마토 시들음병에 대한 항진균 활성이 가장 높았고, 이는 cellulase의 활성과 sideropore의 최대 생산조건과는 상이하였다. 또한 탄소원과 질소원으로 starch와 urea를 각각 첨가시 항진균성 활성이 가장 높았고, 이 역시는 cellulase의 활성과 항진균성 siderophore의 최대 생산조건과 일치하지 않았다. 그리하여 본균주 B. licheniformis Kll은 식물성장촉진 물질은 auxin, 항진균성 siderophore와 cellulase를 생산함과 동시에 또 다른 강력한 항진균성 물질을 생산하는 것을 추가로 확인하였다.

SCFFBS1 Regulates Root Quiescent Center Cell Division via Protein Degradation of APC/CCCS52A2

  • Geem, Kyoung Rok;Kim, Hyemin;Ryu, Hojin
    • Molecules and Cells
    • /
    • 제45권10호
    • /
    • pp.695-701
    • /
    • 2022
  • Homeostatic regulation of meristematic stem cells accomplished by maintaining a balance between stem cell self-renewal and differentiation is critical for proper plant growth and development. The quiescent center (QC) regulates root apical meristem homeostasis by maintaining stem cell fate during plant root development. Cell cycle checkpoints, such as anaphase promoting complex/cyclosome/cell cycle switch 52 A2 (APC/CCCS52A2), strictly control the low proliferation rate of QC cells. Although APC/CCCS52A2 plays a critical role in maintaining QC cell division, the molecular mechanism that regulates its activity remains largely unknown. Here, we identified SCFFBS1, a ubiquitin E3 ligase, as a key regulator of QC cell division through the direct proteolysis of CCS52A2. FBS1 activity is positively associated with QC cell division and CCS52A2 proteolysis. FBS1 overexpression or ccs52a2-1 knockout consistently resulted in abnormal root development, characterized by root growth inhibition and low mitotic activity in the meristematic zone. Loss-of-function mutation of FBS1, on the other hand, resulted in low QC cell division, extremely low WOX5 expression, and rapid root growth. The 26S proteasome-mediated degradation of CCS52A2 was facilitated by its direct interaction with FBS1. The FBS1 genetically interacted with APC/CCCS52A2-ERF115-PSKR1 signaling module for QC division. Thus, our findings establish SCFFBS1-mediated CCS52A2 proteolysis as the molecular mechanism for controlling QC cell division in plants.

Caveolin-1 inhibits membrane-type 1 matrix metalloproteinase activity

  • Kim, Hye-Nan;Chung, Hye-Shin
    • BMB Reports
    • /
    • 제41권12호
    • /
    • pp.858-862
    • /
    • 2008
  • Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a zinc-dependent proteinase found in cholesterol-rich lipid rafts on the plasma membrane. MT1-MMP hydrolyzes extracellular matrix (ECM) proteins, activates pro-matrix metalloproteinase-2 (proMMP-2) and plays an important role in ECM remodeling, cancer cell migration and metastasis. The role of caveolin-1, an integral protein of caveolae, in the activation of MT1-MMP remains largely unknown. Here, we show that the expression of caveolin-1 attenuates the activation of proMMP-2, reduces proteolytic cleavage of ECM and inhibits cell migration. We utilized the cytoplasmic tail domain deletion (${\Delta}CT$) or the E240A mutant of MT1-MMP. Co-expression of caveolin-1 with the wild-type or the ${\Delta}CT$ MT1-MMP decreased the proMMP-2 activation and inhibited collagen degradation and cell migration. Caveolin-1 had no effect on the catalytically inert E240A MT1-MMP. Our findings suggest that caveolin-1 is essential in the down-regulation of MT1-MMP activity by promoting internalization from the cell surface.

Fractionated Aged Black Garlic Extracts Enhance Growth of Anti-My-10 Hybridoma Cells and Production of IgG1 Antibody

  • Lee, Ji Young;Chung, Namhyun;Lee, Yong Kwon
    • Journal of Applied Biological Chemistry
    • /
    • 제57권1호
    • /
    • pp.61-63
    • /
    • 2014
  • Aged black garlic (ABG) was extracted with 20% ethanol and water (crude extracts) and fractionated into three categories (>10, 3-10, and <3 kDa). The effect of crude extract supplements on anti-My-10 hybridoma cell growth and IgG1 antibody production was investigated in suspension culture with a chemically defined protein-free medium. We observed that supplementation of ABG to the cell culture medium stimulated anti-My-10 hybridoma cell growth and production of IgG1 antibody, particularly with fractionated ABG of low molecular weight. The stimulation depended upon the concentration and the size of the fractionated ABG. We also found that the growth-promoting activity was not correlated with high antibody production. These results suggest that fractionated ABG is a novel and promising alternative as an animal cell culture supplement.

Enhancement of Biocontrol Activity of Serratia plymuthica A21 -4 Toward Phytophthora Blight of Pepper by Amendment of Nutritional Condition

  • Shen, Shun-Shan;Kim, Chang-Guk;Park, Chang-Seuk
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.96.1-96
    • /
    • 2003
  • Serratia plymuthim A21-4 strongly inhibits the mycelial growth, zoospore formation, and cystospore germination of Phytophthor spp and Pythium species. The bacterial isolate produced antifungal substance and chitinase. The bacteria also enhanced to plant growth remarkably in low nutritional condition. The application of cell suspension of A21-4 to pepper seedlings in greenhouse experiments and soil drenching in farmer's field was proved successfully to control the phythophthora blight of pepper. For the effective control, however, relatively high density of cell number(10$\^$9/cfu/$m\ell$) is required. Density effect was similar in plant growth promoting activity of A21-4. Though this investigation we improved the problem with changes of culture condition of bacteria and some nutritional amendment.

  • PDF

Rhizospheric-Derived Nocardiopsis alba BH35 as an Effective Biocontrol Agent Actinobacterium with Antifungal and Plant Growth-Promoting Effects: In Vitro Studies

  • Mohamed H. El-Sayed;Abd El-Nasser A. Kobisi;Islam A. Elsehemy;Mohamed A. El-Sakhawy
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권5호
    • /
    • pp.607-620
    • /
    • 2023
  • The biocontrol approach using beneficial microorganisms to control crop diseases is becoming an essential alternative to chemical fungicides. Therefore, new and efficient biocontrol agents (BCA) are needed. In this study, a rhizospheric actinomycete isolate showed unique and promising antagonistic activity against three of the most common phytopathogenic fungi, Fusarium oxysporum MH105, Rhizoctonia solani To18, and Alternaria brassicicola CBS107. Identification of the antagonistic strain, which was performed according to spore morphology and cell wall chemotype, suggested that it belongs to the Nocardiopsaceae. Furthermore, cultural, physiological, and biochemical characteristics, together with phylogenetic analysis of the 16S rRNA gene (OP869859.1), indicated the identity of this strain to Nocardiopsis alba. The cell-free filtrate (CFF) of the strain was evaluated for its antifungal potency, and the resultant inhibition zone diameters ranged from 17.0 ± 0.92 to 19.5 ± 0.28 mm for the tested fungal species. Additionally, the CFF was evaluated in vitro to control Fusarium wilt disease in Vicia faba using the spraying method under greenhouse conditions, and the results showed marked differences in virulence between the control and treatment plants, indicating the biocontrol efficacy of this actinomycete. A promising plant-growth promoting (PGP) ability in seed germination and seedling growth of V. faba was also recorded in vitro for the CFF, which displayed PGP traits of phosphate solubilization (48 mg/100 ml) as well as production of indole acetic acid (34 ㎍/ml) and ammonia (20 ㎍/ml). This study provided scientific validation that the new rhizobacterium Nocardiopsis alba strain BH35 could be further utilized in bioformulation and possesses biocontrol and plant growth-promoting capabilities.

Root Bark of Morus alba L. and Its Bioactive Ingredient, Ursolic Acid, Suppress the Proliferation of Multiple Myeloma Cells by Inhibiting Wnt/β-Catenin Pathway

  • Song, Geu Rim;Choi, Yoon Jung;Park, Soo Jin;Shin, Subeen;Lee, Giseong;Choi, Hui Ji;Lee, Do Yup;Song, Gyu-Yong;Oh, Sangtaek
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권11호
    • /
    • pp.1559-1567
    • /
    • 2021
  • The root bark of Morus alba L. has cytotoxic activity against several types of cancer cells. However, little is known about its chemopreventive mechanisms and bioactive metabolites. In this study, we showed that M. alba L. root bark extracts (MRBE) suppressed β-catenin response transcription (CRT), which is aberrantly activated in various cancers, by promoting the degradation of β-catenin. In addition, MRBE repressed the expression of the β-catenin/T-cell factor (TCF)-dependent genes, c-myc and cyclin D1, thus inhibiting the proliferation of RPMI-8226 multiple myeloma (MM) cells. MRBE induced apoptosis in MM cells, as evidenced by the increase in the population of annexin VFITC-positive cells and caspase-3/7 activity. We identified ursolic acid in MRBE through LC/mass spectrum (MS) and observed that it also decreased intracellular β-catenin, c-myc, and cyclin D1 levels. Furthermore, it suppressed the proliferation of RPMI-8226 cells by stimulating cell cycle arrest and apoptosis. These findings suggest that MRBE and its active ingredient, ursolic acid, exert antiproliferative activity by promoting the degradation of β-catenin and may have significant chemopreventive potential against MM.

Induction of Ornithine Decarboxylase and Tumor Promotion by N-Methyl-N′-Nitro-N-Nitrosoguanidine, Sodium Chloride, and Dimethyl Itaconate

  • Aeree moon, Aeree-Moon;Kim, Dae-Joong;Han, Beom-Seok;Hwang, Moon-Ok;Kim, Chang-Ok;Choi, Kwang-Sik
    • Biomolecules & Therapeutics
    • /
    • 제1권2호
    • /
    • pp.137-142
    • /
    • 1993
  • The possible tumor-promoting activities of sodium chloride (NaCl) and dimethyl itaconate (DMI), one of the quinone reductase inducers, were examined on stomach of male Wistar rats treated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Administrations of NaCl and DMI after the initiation by MNNG resulted in various sized masses in the rat forestomach. Histopathologic studies showed that the combination of NaCl and DMI made an enhancing effect on the MNNG-induced carcinogenesis, resulting in papilloma in 5 weeks and squamous cell carcinoma in 20 weeks in submucosal area of forestomach. We also used an in vivo shortterm method for evaluating possible tumor-promoting activity with ornithine decarboxylase (ODC) as a marker. The markable inductions of the ODC activities by MNNG, NaCl, and DMI were found in the pyloric mucosa of rat stomach in time-dependent manners. A single administration of MNNG induced ODC activity up to 288 pmol $CO_2$/hr/mg protein at 24 hr after the administration. NaCl caused induction of ODC with a maximum of 179 pmol $CO_2$/hr/mg protein at 8 hr after the administration. ODC was induced up to 539 pmol $CO_2$/hr/mg protein at 16 hr after the administration of DMI. Additional treatment of NaCl and NaCl plus DMl caused 2 fold and 7 fold increases, respectively, in the ODC activity of the MNNG-alone group at 24 hr after the administration. These results suggest that NaCl and DMI have promoting activities in the rat gastric carcinogenesis initiated by MNNG.

  • PDF

Antagonistic Activity against Dirty Panicle Rice Fungal Pathogens and Plant Growth-Promoting Activity of Bacillus amyloliquefaciens BAS23

  • Saechow, Sukanya;Thammasittirong, Anon;Kittakoop, Prasat;Prachya, Surasak;Thammasittirong, Sutticha Na-Ranong
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권9호
    • /
    • pp.1527-1535
    • /
    • 2018
  • Bacterial strain BAS23 was isolated from rice field soil and identified as Bacillus amyloliquefaciens. Based on dual culture method results, the bacterium BAS23 exhibited potent in vitro inhibitory activity on mycelial growth against a broad range of dirty panicle fungal pathogens of rice (Curvularia lunata, Fusarium semitectum and Helminthosporium oryzae). Cell-free culture of BAS23 displayed a significant effect on germ tube elongation and mycelial growth. The highest dry weight reduction (%) values of C. lunata, H. oryzae and F. semitectum were 92.7%, 75.7%, and 68.9%, respectively. Analysis of electrospray ionization-mass spectrometry (ESI-MS) and $^1H$ nuclear magnetic resonance (NMR) spectroscopy revealed that the lipopeptides were iturin A with a C14 side chain (C14 iturinic acid), and a C15 side chain (C15 iturinic acid), which were produced by BAS23 when it was cultured in nutrient broth (NB) for 72 h at $30^{\circ}C$. BAS23, the efficient antagonistic bacterium, also possessed in vitro multiple traits for plant growth promotion and improved rice seedling growth. The results indicated that BAS23 represents a useful option either for biocontrol or as a plant growth-promoting agent.