• Title/Summary/Keyword: cell-cycle arrest

Search Result 711, Processing Time 0.022 seconds

SOCS1 counteracts ROS-mediated survival signals and promotes apoptosis by modulating cell cycle to increase radiosensitivity of colorectal cancer cells

  • Ryu, Ji-Yoon;Oh, Jiyoung;Kim, Su-Min;Kim, Won-Gi;Jeong, Hana;Ahn, Shin-Ae;Kim, Seol-Hee;Jang, Ji-Young;Yoo, Byong Chul;Kim, Chul Woo;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.55 no.4
    • /
    • pp.198-203
    • /
    • 2022
  • As negative regulators of cytokine signaling pathways, suppressors of cytokine signaling (SOCS) proteins have been reported to possess both pro-tumor and anti-tumor functions. Our recent studies have demonstrated suppressive effects of SOCS1 on epithelial to mesenchymal signaling in colorectal cancer cells in response to fractionated ionizing radiation or oxidative stress. The objective of the present study was to determine the radiosensitizing action of SOCS1 as an anti-tumor mechanism in colorectal cancer cell model. In HCT116 cells exposed to ionizing radiation, SOCS1 over-expression shifted cell cycle arrest from G2/M to G1 and promoted radiation-induced apoptosis in a p53-dependent manner with down-regulation of cyclin B and up-regulation of p21. On the other hand, SOCS1 knock-down resulted in a reduced apoptosis with a decrease in G1 arrest. The regulatory action of SOCS1 on the radiation response was mediated by inhibition of radiation-induced Jak3/STAT3 and Erk activities, thereby blocking G1 to S transition. Radiation-induced early ROS signal was responsible for the activation of Jak3/Erk/STAT3 that led to cell survival response. Our data collectively indicate that SOCS1 can promote radiosensitivity of colorectal cancer cells by counteracting ROS-mediated survival signal, thereby blocking cell cycle progression from G1 to S. The resulting increase in G1 arrest with p53 activation then contributes to the promotion of apoptotic response upon radiation. Thus, induction of SOCS1 expression may increase therapeutic efficacy of radiation in tumors with low SOCS1 levels.

Molecular Biological Study of The Effects of Gilgyung-Tang(GGT) on Cellular Proliferation and Viability of Normal Human Lung Fibriblast Cell (길경탕(桔梗湯)이 인체(人體) 폐세포(肺細胞)에 미치는 영향(影響)에 관(關)한 분자생물학적(分子生物學的) 연구(硏究))

  • Rhee, Hyung-Koo
    • The Journal of Korean Medicine
    • /
    • v.20 no.2
    • /
    • pp.88-97
    • /
    • 1999
  • To characterize the effects of Gilgyung-Tang(GGT) on cellular proliferation and viability of normal lung fibroblast cells, we examined the cell cycle progression and cell cycle-related gene expression in T3891 using a flow cytometry and a quantitative RT-PCR analysis. 1. The significant surpression effect of cellular proliferations of GGT was observed in proportion to a certain concentration and time. 2. GGT was identified to induce apoptotic death of damaged cells by treatment with a DNA-damage agent and etoposide, while it stimulated the recovery of cellular viability of normal cells. 3 The significant reductions of mRNA expression of PCAN, c-Fos treated by GGT were observed. 4. The significant inductions of mRNA expression of p53, CDKN1. Gadd45 treated by GGT were observed. 5. The apoptosis caused by the reduction of Bcl-2 genes was significant and the Bax genes were increased. but the amount of Fas genes were not changed. These results strongly suggest that GGT triggers arrest of the cell cycle at G1 phase, and thus causes an inhibition of cellular proliferation of human normal lung cells through the transcriptional up-regulation of cell cycle inhibitory genes and down-regulation of induction of cell cycle stimulating genes respectably.

  • PDF

The Regulation of p27Kip-1 and Bcl2 Expression Is Involved in the Decrease of Osteoclast Proliferation by A2B Adenosine Receptor Stimulation

  • Kim, Hong Sung;Lee, Na Kyung
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.327-332
    • /
    • 2017
  • A2B adenosine receptor (A2BAR) is known to be a regulator of bone homeostasis, but the regulatory mechanism of A2BAR on the osteoclast proliferation are poorly explored. Recently, we have shown that stimulation with BAY 60-6583, a specific agonist of A2BAR, significantly reduced macrophage-colony stimulating factor (M-CSF)-induced osteoclast proliferation by inducing cell cycle arrest at G1 phase and increasing the apoptosis of osteoclasts. The objective of this study was to investigate the regulatory mechanisms of cell cycle and apoptosis by A2BAR stimulation. The expression of A2BAR and M-CSF receptor, c-Fms, was not changed by A2BAR stimulation whereas M-CSF effectively induced c-Fms expression during osteoclast proliferation. Interestingly, A2BAR stimulation remarkably increased the expression of $p27^{Kip-1}$, a cell cycle inhibitor, but the expression of Cyclin D1 and cdk4 was not affected. In addition, while BAY 60-6583 treatment reduced the expression of Bcl2, an anti-apoptotic oncogene, it failed to regulate the expression of Bax, a pro-apoptotic marker. Taken together, these results imply that the increase of $p27^{Kip-1}$ inducing cell cycle arrest at G1 phase and the decrease of Bcl2 inducing anti-apoptotic response by A2BAR stimulation contribute to the down-regulation of osteoclast proliferation.

Anti-cancer Effects of Bujeonghangamtang on Human Pancreatic Cancer Cell Line PANC-1 (부정항암탕(扶正抗癌湯)의 사람 췌장암 세포주 PANC-1에 대한 항종양(抗腫瘍) 효과(效果))

  • Kim, Hoon;Won, Jin-Hee;Moon, Goo
    • Herbal Formula Science
    • /
    • v.15 no.1
    • /
    • pp.213-228
    • /
    • 2007
  • Objectives : The purpose of this report was to investigate the chemotherapeutic effect of Bujeonghangamtang against cancer cells. Materials and Methods : Various cancer cell lines including PANC-1, C6 glioma, SH-SY5Y, HepG2, and MCF-7 cells, were used. Apoptosis was determined by DAPI nuclei staining and flow cytometry in PANC-1 cells treated with 1 mg/ml Bujeonghangamtang for 48 hr. Expression of cell cycle arrest mediators including, cdc2p34 and cyclin B1 proteins were measured by Western blot analysis. Mitochondrial membrane potential was measured by fluorescence staining with JC-1, rhodamine 123. Result : Bujeonghangamtang induced the apoptosis of PANC-1, which was characterized as nucleic acid and genomic DNA fragmentation, chromatin condensation, and sub-G0/G1 fraction of cell cycle increase. but not C6 glioma, SH-SY5Y, HepG2, and MCF-7 cells. PANC-1 cells were markedly sensitive to Bujeonghangamtang. Treatment with Bujeonghangamtang resulted in the decreased expression of cdc2p34 and cyclin B1. Treatment with Bujeonghangamtang also increased the ROS production and induced mitochondrial dysfunction. Conclusion : Bujeonghangamtang exerted cytotoxicity against human Pancreatic cancer cells via cell cycle arrest-mediated apoptotic signaling including ROS production and mitochondrial dysfunction. Our data suggest that Bujeonghangamtang may be an important modulator of chemosensitivity of cancer cells against anticancer chemotherapeutic agents.

  • PDF

siRNA-mediated Silencing of Notch-1 Enhances Docetaxel Induced Mitotic Arrest and Apoptosis in PCa Cells

  • Ye, Qi-Fa;Zhang, Yi-Chuan;Peng, Xiao-Qing;Long, Zhi;Ming, Ying-Zi;He, Le-Ye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2485-2489
    • /
    • 2012
  • Purpose: Notch is an important signaling pathway that regulates cell fate, stem cell maintenance and the initiation of differentiation in many tissues. It has been reported that activation of Notch-1 contributes to tumorigenesis. However, whether Notch signaling might have a role in chemoresistance of prostate cancer is unclear. This study aimed to investigate the effects of Notch-1 silencing on the sensitivity of prostate cancer cells to docetaxel treatment. Methods: siRNA against Notch-1 was transfected into PC-3 prostate cancer cells. Proliferation, apoptosis and cell cycle distribution were examined in the presence or absence of docetaxel by MTT and flow cytometry. Expression of $p21^{waf1/cip1}$ and Akt as well as activation of Akt in PC-3 cells were detected by Western blot and Real-time PCR. Results: Silencing of Notch-1 promoted docetaxel induced cell growth inhibition, apoptosis and cell cycle arrest in PC-3 cells. In addition, these effects were associated with increased $p21^{waf1/cip1}$ expression and decreased Akt expression and activation in PC-3 cells. Conclusion: Notch-1 promotes chemoresistance of prostate cancer and could be a potential therapeutic target.

Effect of the Paclitaxel and Radiation in the Mucosa of the Small Bowel of Rat (흰쥐의 소장점막에 Paclitaxel(Taxol)과 방사선조사의 효과)

  • Lee Kyung-Ja
    • Radiation Oncology Journal
    • /
    • v.14 no.4
    • /
    • pp.255-264
    • /
    • 1996
  • Purpose : Paclitaxel is a chemotherapeutic agent with potent microtubule stabilizing activity that arrests cell cycle in $G_2$-M Because $G_2$-M is the most radiosensitive Phase of the cell cycle, paclitaxel has potential as a cell cycle- specific radiosensitizer. This study was designed to investigate the ability of paclitaxel to increase the radiotoxicity in normal small bowel mucosa of the rat. materials and Methods : A sigle intraperitoneal infusion of paclitaxel (10mg/kg), and a single irradiation(8 Gy, x-ray) to the whole abdomen and combination of radiation(8 Gr, x-ray) 24 hours after paclitaxel infusion in the rats were done. The changes of jejunal mucosa, and kinetics of mitotic arrest and apoptosis in the jejunal crypt were defined at 6 hours - 5 days after each treatment histologically. Results : Paclitaxel blocked jejunal crypt cell in mitosis and induced minmal apoptosis. Mitotic arrest by paclitaxel was peaked at 6 hours after infusion and returned to normal by 24 hours. Radiation induced apoptosis and peaked at 6 hours and returned to normal by 24 hours. Combination of paclitaxel and radiation blocked crypt cell in mitosis at 3 days and induced apoptosis slightly at 6 hours and 24 hours and returned to normal by 3 days. The incidence of apoptosis in combined group at 6 hours was slightly higher than normal control but significantly lower than radiation alone group. The major changes of jejunal mucosa were nuclear vesicle and atypia which were appeared at 6 hours - 3 days and returned to normal by 5 days The degree of the mucosal changes are not different in 3 groups except for absence of inflmmatory reaction in radiation group. Conclusion : Mitotic arrest by paclitaxel was peaked at 6 hours and returned to normal by 24 hours and paclitaxel induced minimal apoptosis. Radiation induced apoptosis, peaked at 6 hours and returned to normal by 24 hours. Radiation-induced apoptosis was less in combined group which suggested that paclitaxel have a radioprotective effect when radiation was given 24 hours after paclitaxel infusion.

  • PDF

Molecular Mechanisms of Cell Cycle Arrest and Apoptosis by Dideoxypetrosynol A, a Polyacetylene from the Sponge Petrosia sp., in Human Monocytic Leukemia Cells

  • Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.243-251
    • /
    • 2006
  • Dideoxypetrosynol A, a polyacetylene from the marine sponge Petrosia sp., is known to exhibit significant selective cytotoxic activity against a small panel of human tumor cell lines, however, the mechanisms of which are poorly understood. In the present study, it was investigated the further possible mechanisms by which dideoxytetrosynol A exerts its anti-proliferative action in cultured human leukemia cell line U937. We observed that the proliferation-inhibitory effect of dideoxypetrosynol A was due to the induction of G1 arrest of the cell cycle and apoptosis, which effects were associated with up-regulation of cyclin D1 and down-regulation of cyclin E without any change in cyclin-dependent-kinases (Cdks) expression. Dideoxypetrosynol A markedly induced the levels of Cdk inhibitor p16/INK4a expression. Furthermore, down-regulation of phosphorylation of retinoblastoma protein (pRB) by this compound was associated with enhanced binding of pRB and the transcription factor E2F-1. The increase in apoptosis was associated with a dose-dependent up-regulation in pro-apoptotic Bax expression and activation of caspase-3 and caspase-9. Dideoxytetrosynol A decreased the levels of cyclooxygenase (COX)-2 mRNA and protein expression without significant changes in the levels of COX-1, which was correlated with a decrease in prostaglandin E2 (PGE2) synthesis. Furthermore, dideoxytetrosynol A treatment markedly inhibited the activity of telomerase, and the expression of human telomerase reverse transcriptase (hTERT), a main determinant of the telomerase enzymatic activity, was progressively down-regulated by dideoxytetrosynol A treatment in a dose-dependent fashion. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of dideoxytetrosynol A.

  • PDF

A Neuromedin B Receptor Blockade Inhibits the Growth of Human Oral Cancer Cells

  • Park, Hyun-Joo;Jeon, Jae-Hoon;Kim, Mi-Kyoung;Ryu, Mi Heon;Kim, Yong-Deok;Bae, Soo-Kyung;Bae, Moon-Kyoung
    • International Journal of Oral Biology
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Neuromedin B (NMB) acts as a growth factor or a morphogen and plays a role in cancer progression. Indeed, the NMB receptor (NMB-R) is overexpressed in different types of tumors. In our current study, we investigated the involvement of NMB-R in the proliferation of oral cancer cells. Human oral squamous cell carcinoma (SCC) and human oral cancer cells, SCC-25 cells were found to be NMB-R-positive. The NMB-R antagonist PD168368 inhibited the proliferation of SCC-25 cells and reduced their colony formation capacity. We also found that PD168368 induced the cell cycle arrest and apoptosis of SCC-25 cells in a dose-/time-dependent manner. Overall, this antitumor activity of PD168368 in human oral cancer cells suggests that NMB-R is a potential target for the future prevention and treatment of human cancers.

Pharmacodynamics of Tirapazamine in Histocultures of a Human Lung Adenocarcinoma Xenograft (인체폐암세포 조직배양계(histocultures)에서 티라파자민의 약력학)

  • Park, Jong-Kook;Kuh, Hyo-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.4
    • /
    • pp.231-237
    • /
    • 2006
  • Hypoxia in solid tumors is known to contribute to intrinsic chemoresistance. Histocultures are in vitro 3 dimensional cultures of tumor tissues and maintain the characteristic microenvironment of human solid tumors in vivo including hypoxia and multicellular structure. In this study, we evaluated the pharmacodynamics of tirapazamine(TPZ), a hypoxia-selective cytotoxin, in human non small cell lung cancer(NSCLC) cells grown as monolayers and histocultures. Antiproliferative activity of TPZ was determined after various conditions of drug exposure, and cell cycle arrest and apoptosis were also measured using flow cytometry. In monolayers, hypoxia selectivity measured by hypoxic/normoxic cytotoxicity ratio was increased with longer exposure. Lower cytotoxicity of TPZ was observed in histocultures compared to monolayers, however, a similar level of cytotoxicity was obtained with longer exposure of 96 hr. TPZ induced $G_2/M$ arrest and apoptosis in both culture conditions, which were greatly enhanced under hypoxic condition. Our data clearly showed the different pharmacodynamics of TPZ in monolayers and histocultures. Antiproliferative activity of TPZ against human solid tumors can be improved with longer drug exposure by exploiting drug delivery systems or by combining angiogenesis inhibitors to maintain drug concentration in tumor tissues.

Effects of Abiotic Stresses on Cell Cycle Progression in Tobacco BY-2 Cells

  • Jang, Su Jin;Shin, Sung Hae;Yee, Sung Tae;Hwang, Baek;Im, Kyung Hoan;Park, Ky Young
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.136-141
    • /
    • 2005
  • Mild stresses such as high temperature ($30^{\circ}C$) or a low $H_2O_2$ concentration induced transient cell cycle arrest at G1/S or G2/M depending on the cell cycle stage at which the stress was applied. When stresses were introduced during G0 or G1, the G1/S checkpoint was mainly used; when stresses were introduced after S phase, G2/M was the primary checkpoint. The slowing of cell cycle progression was associated with transient delays in expression of A-, B-, and D-type cyclins. The delay in expression of NtcycA13, one of the A-type cyclins, was most pronounced. The levels of expression of Ntcyc29 (a cyclin B gene) and of CycD3-1 differed most depending on the applied stress, suggesting that different cellular adjustments to mild heat and a low concentration of $H_2O_2$ are reflected in the expression of these two cyclins.