• 제목/요약/키워드: cell-cell adhesion

검색결과 1,105건 처리시간 0.028초

조직공학에서 생체역학의 역할 (The Role of Biomechanics in Tissue Engineering)

  • 박귀덕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1458-1460
    • /
    • 2008
  • Tissue engineering is an interdisciplinary field that utilizes the principles of engineering and life sciences toward the creation of biological substitutes. Traditionally, major components of tissue engineering are cells, scaffolds, growth factors and recently biomechanical aspects have been given much attention. A large number of studies have reported that mechanical signals are of particular interest in either encouraging or inhibiting cellular responses. In tissue engineering, cell adhesion is a very important step, because quality of adhesion may determine a cell fate in the future. Elasticity of cell-adhesive substrate is found critical in regulating stem cell differentiation. Cells exert different contractile forces for cell migration, depending on substrate mechanics. Though tissue engineering is very interactive with diverse expertise, for a breakthrough, principles of biomechanics in tissue and cell level needs to be fully understood.

  • PDF

단핵구 분화에 대한 Fibronectin 및 그 단편의 역할 (A Possible Role of Fibronectin on the Differentiation of Monocyte to Macrophase)

  • Ok Sun Bang;You
    • 한국동물학회지
    • /
    • 제36권4호
    • /
    • pp.514-521
    • /
    • 1993
  • Monocyte interaction with fibronectin (FN) mediates specific cell surface receptors and results in cell attachment and differentiation. Several cell-mediated activities for various fragments of FN have been documented. To investigate the regulatory mechanisms of monocyte differentiation by cell binding domains of FN and their receptors, cell attachment-, cell migration-, and its respective inhibition assay were carried out. Monocyte recognizes 38-kDa domain distinctively from its recognition of 85-kDa domain, and the heparin-binding site of the 38-kDa fragment is not involved in monocyte adhesion. Based on these experimental results, it can be suggested that monocvte/macrophase interacts with at least two different sites in FN, which is critical step in cell adhesion and (or) migration.

  • PDF

Effect of Silk Fibroin Biomaterial Coating on Cell Viability and Intestinal Adhesion of Probiotic Bacteria

  • Kwon, Gicheol;Heo, Bohye;Kwon, Mi Jin;Kim, Insu;Chu, Jaeryang;Kim, Byung-Yong;Kim, Byoung-Kook;Park, Sung Sun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권4호
    • /
    • pp.592-600
    • /
    • 2021
  • Probiotics can be processed into a powder, tablet, or capsule form for easy intake. They are exposed to frequent stresses not only during complex processing steps, but also in the human body after intake. For this reason, various coating agents that promote probiotic bacterial stability in the intestinal environment have been developed. Silk fibroin (SF) is a material used in a variety of fields from drug delivery systems to enzyme immobilization and has potential as a coating agent for probiotics. In this study, we investigated this potential by coating probiotic strains with 0.1% or 1% water-soluble calcium (WSC), 1% SF, and 10% trehalose. Under simulated gastrointestinal conditions, cell viability, cell surface hydrophobicity, and cell adhesion to intestinal epithelial cells were then measured. The survival ratio after freeze-drying was highest upon addition of 0.1% WSC. The probiotic bacteria coated with SF showed improved survival by more than 10.0% under simulated gastric conditions and 4.8% under simulated intestinal conditions. Moreover, the cell adhesion to intestinal epithelial cells was elevated by 1.0-36.0%. Our results indicate that SF has positive effects on enhancing the survival and adhesion capacity of bacterial strains under environmental stresses, thus demonstrating its potential as a suitable coating agent to stabilize probiotics throughout processing, packaging, storage and consumption.

Enhancement of Anti-tumorigenic Polysaccharide Production, Adhesion, and Branch Formation of Bifidobacterium bifidum BGN4 by Phytic Acid

  • Ku, Seock-Mo;You, Hyun-Ju;Ji, Geun-Eog
    • Food Science and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.749-754
    • /
    • 2009
  • The polysaccharide (BB-pol) extracted from Bifidobacterium bifidum BGN4 showed growth inhibitory effects on several colon cancer cell lines such as HT-29 and HCT-116. To increase the yield of polysaccharide, B. bifidum BGN4 was cultured in various culture media with different compositions. When B. bifidum BGN4 was cultured in modified MRS broth containing phytic acid, the cells showed increased branch formation and enlarged morphology. The content of total carbohydrate and the ability of adhesion to intestinal epithelial cells were also increased by phytic acid. The polysaccharide obtained from the cells grown in the presence of phytic acid inhibited the proliferation of cancer cell lines such as HT-29 and MCF-7 cells but not normal colon cell line, FHC. Taken together, Bifidobacterium grown in the presence of phytic acid may confer enhanced beneficial function for the host.

Anti-angiogenic, Anti-cell Adhesion Switch from Halophilic Enterobacteria

  • Lim, Jong Kwon;Seo, Hyo Jin;Kim, Eun Ok;Meydani, Mohsen;Kim, Jong Deog
    • 한국해양바이오학회지
    • /
    • 제1권3호
    • /
    • pp.156-162
    • /
    • 2006
  • The halophilic enterobacteria, Enterobacteria cancerogenus, was isolated from the intestines of the fusiform fish (Trachurus japonicus) to yield a protein-like material termed PLM-f74. PLM-f74 was characterized by strong inhibition ratios to angiogenesis (82.8% at the concentration of $18.5{\mu}g/mL$) and elevated antioxidative capacities with low toxicity. The PLM-f74 is a glycoprotein comprised of saccharides and amino acids. PLM-f74 inhibited non-activated U937 monocytic cell adhesion to HUVECs activated with IL-$1{\beta}$ by 78.0%, and the adherence of U937 cells treated with the PLM-f74 and stimulated with IL-$1{\beta}$ to unstimulated HUVECs decreased by 102%. When both cell types were pretreated with PLM-f74, the adhesion of U937 cells to IL-$1{\beta}$ stimulated HUVECs was completely suppressed by 121% at a concentration of 18.5 ug/mL. PLM-f74 blocked signal pathways from VEGFR2, PI3K, ${\beta}$-catenin and VE-cadherin to NF-kB based on western bolt analysis. And also inhibited IL-1-stimulated HUVEC expression of the adhesion molecules, ICAM-1 by 40%, VCAM-1 by 60%, and E-selectin by 70% at the same concentration noted above. New anti-angiogenic and anti-cell adhesion materials showing elevated antioxidative capacities and non-toxicity may be expected from these results.

  • PDF

Suppression of Human Fibrosarcoma Cell Metastasis by Phyllanthus emblica Extract in Vitro

  • Yahayo, Waraporn;Supabphol, Athikom;Supabphol, Roongtawan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6863-6867
    • /
    • 2013
  • Phyllanthus emblica (PE) is known to exhibit various pharmacological properties. This study aimed to evaluate the antimetastatic potential of a PE aqueous extract. Cytotoxicity to human fibrosarcoma cells, HT1080, was determined by viability assay using the 3-(4,5-dimethylthiazol,2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent. Cell migration and invasion were investigated using chemotaxis chambers containing membranes precoated with collagen IV and Matrigel, respectively. Cell attachment onto normal surfaces of cell culture plates was tested to determine the cell-adhesion capability. The molecular mechanism of antimetastatic activity was assessed by measuring the gene expression of matrix metalloproteinases, MMP2, and MMP9, using reverse transcription-polymerase chain reaction (RT-PCR) assay. The mRNA levels of both genes were significantly down-regulated after pretreatment with PE extract for 5 days. Our findings show the antimetastatic function of PE extract in reducing cell proliferation, migration, invasion, and adhesion in both dose- and time-dependent manners, especially growth arrest with low $IC_{50}$ value. A decrease in the expression of both MMP2 and MMP9 seems to be the cellular mechanism for antimetastasis in this case. There is a high potential to use PE extracts clinically as an optional adjuvant therapeutic drug for therapeutic intervention strategies in cancer therapy or chemoprevention.

Effects of the Chestnut Inner Shell Extract on the Expression of Adhesion Molecules, Fibronectin and Vitronectin, of Skin Fibroblasts in Culture

  • Chi, Yeon-Sook;Heo, Moon-Young;Chung, Ji-Hun;Jo, Byoung-Kee;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • 제25권4호
    • /
    • pp.469-474
    • /
    • 2002
  • The inner shell of the chestnut (Castanea crenata S. et Z., Fagaceae) has been used as an anti-wrinkle/skin firming agent in East Asia, and preliminary experiments have found that a 70% ethanol extract from this plant material can prevent cell detachment of skin fibroblasts from culture plates. In order to examine the molecular mechanisms underlying this phenomenon, its effects on the expression of adhesion molecules, such as fibronectin and vitronectin, were investigated using the mouse skin fibroblast cell line, NIH/3T3. Using fixed-cell ELISA, Western blotting and immunofluorescence cell staining, it was clearly demonstrated that the chestnut inner shell extract enhanced the expression of the cell-associated fibronectin and vitronectin. Scoparone (6,7-dimethoxycoumarin), isolated from the extract, also possessed similar properties. These findings suggest that the enhanced expression of the adhesion molecules may be one of the molecular mechanisms for how the chestnut inner shell extract preventing cell detachment and may be also responsible for its anti-wrinkle/skin firming effect.

Bovine Lactoferricin Induces Intestinal Epithelial Cell Activation through Phosphorylation of FAK and Paxillin and Prevents Rotavirus Infection

  • Jeong, Ye Young;Lee, Ga Young;Yoo, Yung Choon
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권8호
    • /
    • pp.1175-1182
    • /
    • 2021
  • We investigated the effect of bovine lactoferricin (Lfcin-B), a peptide derived from bovine lactoferrin, on activation of intestinal epithelial cells in IEC-6 intestinal cell, and protection against in vivo rotavirus (RV) infection. Treatment with Lfcin-B significantly enhanced the growth of IEC-6 cells and increased their capacity for attachment and spreading in culture plates. Also, Lfcin-B synergistically augmented the binding of IEC-6 cells to laminin, a component of the extracellular matrix (ECM). In the analysis of the intracellular mechanism related to Lfcin-B-induced activation of IEC-6 cells, this peptide upregulated tyrosine-dependent phosphorylation of focal adhesion kinase (FAK) and paxillin, which are intracellular proteins associated with cell adhesion, spreading, and signal transduction during cell activation. An experiment using synthetic peptides with various sequences of amino acids revealed that a sequence of 9 amino acids (FKCRRWQWR) corresponding to 17-25 of the N-terminus of Lfcin-B is responsible for the epithelial cell activation. In an in vivo experiment, treatment with Lfcin-B one day before RV infection effectively prevented RV-induced diarrhea and significantly reduced RV titers in the bowels of infected mice. These results suggest that Lfcin-B plays meaningful roles in the maintenance and repair of intestinal mucosal tissues, as well as in protecting against intestinal infection by RV. Collectively, Lfcin-B is a promising candidate with potential applications in drugs or functional foods beneficial for intestinal health and mucosal immunity.

암세포에 대한 식물 추출물의 세포외 기질 접착저해 활성 (Inhibitory activity of plant extracts on Cell-ECM adhesion)

  • 이상명;이호재;이충환;안인파;나민균;배기환;고영희
    • 생약학회지
    • /
    • 제31권4호
    • /
    • pp.394-400
    • /
    • 2000
  • Tumor cell interaction with the extracellular matrix (ECM) is defined as the critical event of tumor invasion that signals the initiation of a metastatic cascade. To search for anti-metastatic agent from plants, several plant extracts were screened by cell- ECM anti-adhesion test. As result, Boehmeria pannosa, Dryopteris crassirhizoma, Scilla scilloides, and Agrimonia pilosa were shown a significant anti-adhesion activity.

  • PDF

Phosphatidylcholine의 분해에 의한 Hela 세포와 Gelatin 기질과의 상호작용의 유도 (Hydrolysis of Phosphatidyicholine to Initiate HeLa Cell Adhesion to a Gelatin Substratum)

  • 전장수;이영섭;하만준;김찬길;강신성
    • 한국동물학회지
    • /
    • 제38권4호
    • /
    • pp.457-464
    • /
    • 1995
  • 인간의 상피세포로부터 유래된 암세포의 일종인 HeLa 세포는 거의 모든 기질분자에 부착하지만 spreading은 오직 collagen 혹은 gelatin에서만 일어난다. HeLa 세포의 spreading은 오직 collagen 결과 활성화된 phosphoipase $A_2$(PLA$_2$)에 의한 arachidonic acid(AA)의 형성으로 유도된다. PLA$_2$에 의해 분해되는 인지질을 확인하기 위해 각종 인지질의 농도변화를 spreading 과정에서 측정한 결과 단지 phosphatidylcoline 만이 감소하였으며, 또한 다양한 lysophospholipids 중 lysophosphatidylcholine 만이 spreading 과정에 생성되는 것으로 보아 phosphatidylcoline이 PLA$_2$에 의해 분해되어 AA가 형성되는 것으로 보인다. PLA$_2$의 활성화는 세포질 CA$_2$+의 농도변화 및 세포질 pH의 알칼리화에 기인하지 않으며, 또한 pertussis 혹은 cholera toxin-sensitive G protein 역시 PLA$_2$활성화와는 무관한 것으로 나타났다.

  • PDF