• Title/Summary/Keyword: cell wall components

Search Result 173, Processing Time 0.039 seconds

Micropapillary Variant of Urothelial Carcinoma of the Urinary Bladder: Report of a Case with Cytologic Diagnosis in Urine Specimen (방광의 미세유두형 요로상피암종의 세포소견 -1예 보고-)

  • Lee, Young-Seok;Lee, Hyun-Joo;Choi, Jung-Woo;Shin, Bong-Kyung;Kim, Han-Kyem;Kim, In-Sun;Kim, Ae-Ree
    • The Korean Journal of Cytopathology
    • /
    • v.17 no.1
    • /
    • pp.46-50
    • /
    • 2006
  • A micropapillary variant of urothelial carcinoma (MPC) is a distinct entity with an aggressive clinical course. It has a micropapillary configuration resembling that of ovarian papillary serous carcinoma. Its cytologic features have rarely been reported. We report a case of MPC detected by urine cytology. A woman aged 93 years presented with a chief complaint of macroscopic hematuria. Cytology of her voided urine showed clusters of malignant cells in a micropapillary configuration. Each tumor cell had a vacuolated cytoplasm, a high nuclear:cytoplasmic ratio, and irregular hyperchromatic nuclei. An ureteroscopic examination revealed exophytic sessile papillary masses extending from the left lateral wall to the anterolateral wall of the urinary bladder. A transurethral resection of the tumor was carried out. The tumor was characterized by delicate papillae with a thin, well-developed fibrovascular stromal core and numerous secondary micropapillae lined with small cuboidal cells containing uniform low- to intermediate-grade nuclei and occasional intracytoplasmic mucinous inclusions. These tumor cells infiltrated the muscle layers of the bladder, and lymphatic tumor emboli were frequently seen. Recognizing that the presence of MPC components in urinary cytology is important for distinguishing this lesion from low-grade papillary lesions and high-grade urothelial carcinomas can result in early detection and earlier treatment for an improved treatment outcome.

Changes in plant hydraulic conductivity in response to water deficit

  • Kim, Yangmin X.;Sung, Jwakyung;Lee, Yejin;Lee, Seulbi;Lee, Deogbae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.35-35
    • /
    • 2017
  • How do plants take up water from soils especially when water is scarce in soils? Plants have a strategy to respond to water deficit to manage water necessary for their survival and growth. Plants regulate water transport inside them. Water flows inside the plant via (i) apoplastic pathway including xylem vessel and cell wall and (ii) cell-to-cell pathway including water channels sitting in cell membrane (aquaporins). Water transport across the root and leaf is explained by a composite transport model including those pathways. Modification of the components in those pathways to change their hydraulic conductivity can regulate water uptake and management. Apoplastic barrier is modified by producing Casparian band and suberin lamellae. These structures contain suberin known to be hydrophobic. Barley roots with more suberin content from the apoplast showed lower root hydraulic conductivity. Root hydraulic conductivity was measured by a root pressure probe. Plant root builds apoplastic barrier to prevent water loss into dry soil. Water transport in plant is also regulated in the cell-to-cell pathway via aquaporin, which has received a great attention after its discovery in early 1990s. Aquaporins in plants are known to open or close to regulate water transport in response to biotic and/or abiotic stresses including water deficit. Aquaporins in a corn leaf were opened by illumination in the beginning, however, closed in response to the following leaf water potential decrease. The evidence was provided by cell hydraulic conductivity measurement using a cell pressure probe. Changing the hydraulic conductivity of plant organ such as root and leaf has an impact not only on the speed of water transport across the plant but also on the water potential inside the plant, which means plant water uptake pattern from soil could be differentiated. This was demonstrated by a computer simulation with 3-D root structure having root hydraulic conductivity information and soil. The model study indicated that the root hydraulic conductivity plays an important role to determine the water uptake from soil with suboptimal water, although soil hydraulic conductivity also interplayed.

  • PDF

Changes of Fruit Characteristics and Cell Wall Component during Maturation and Ripening in Asian Pear 'Hanareum', 'Manpungbae', and 'Niitaka' (Pyrus pyrifolia Nakai) ('한아름', '만풍배' 및 '신고' 배의 성숙 기간 중 과실특성 및 세포벽 관련물질의 변화)

  • Vu, Thi Kim Oanh;Lee, Ug-Yong;Choi, Jin-Ho;Lee, Han-Chan;Chun, Jong-Pil
    • Horticultural Science & Technology
    • /
    • v.30 no.4
    • /
    • pp.345-356
    • /
    • 2012
  • We investigated the changes of fruit quality parameters, polysaccharide contents and cell wall components during maturation and ripening of two Korean pear cultivar 'Hanareum' and 'Manpungbae' compared with 'Niitaka' pear (Pyrus pyrifolia Nakai) which showed different physiological maturity based on days after full bloom (DAFB). Flesh firmness decreased continuously with fruit development and maturation, reaching a final level of 29.4, 33.5, and 27.4N at maturity in 'Hanareum' (127 DAFB), 'Manpungbae' (163 DAFB), and 'Niitaka' (170 DAFB), respectively. The level of ethylene production was very low in early season 'Hanareum' pear which showed at most 0.39 ${\mu}L{\cdot}L^{-1}$ at maturity and no ethylene was detected in 'Manpungbae' and 'Niitaka' at maturity. Fructose was the most abundant soluble sugar during fruit maturation in the pears tested and an increase of sucrose was observed during fruit ripening in the Asian pears commonly. Ethanol insoluble solids (EIS) content decreased gradually with different levels among the pear cultivars as fruit ripens consisted of 10.79, 12.72, and 12.75 $mg{\cdot}g^{-1}$ FW. The amount of total soluble polyuronides was higher in early season cultivars 'Hanareum' than those of mid-season cultivar 'Manpungbae' and 'Niitaka'. In 'Niitaka' which harvested most late season, the level of 4% KOH soluble hemicelluloses was lower than 'Hanareum' and 'Manpungbae' and maintained constantly during fruit ripening period. Cellulosic residues were determined high level in 'Niitaka' which showed 612.33 ${\mu}g{\cdot}mg^{-1}$ EIS at maturity when compared with 'Hanareum' (408.0 ${\mu}g{\cdot}mg^{-1}$ EIS) and 'Manpungbae' (538.67 ${\mu}g{\cdot}mg^{-1}$ EIS). The main constituents of cell wall neutral sugars which consisted of arabinose, xylose, galactose, and glucose were decreased gradually with onset of fruit ripening regardless of cultivar. Arabinose which was predominant in 'Hanareum' pear decreased at the last stage of ripening, but the changes of cell wall neutral sugar during ripening were not occurred in 'Niitaka' pear. The change of molecular mass distribution in water soluble pectin observed dominantly at the early stage of fruit development. Depolymerization of 4% KOH-soluble hemicelluloses and degradation of xyloglucan showed in early-season cultivar 'Hanareum' during fruit maturation, and degradation of those fractions were detected only at the early stage fruit development in mid-season cultivar 'Manpungbae' and 'Niitaka'. The molecular mass profile of CDTA soluble pectin, $Na_2CO_3$-SP and 24% KOH soluble hemicelluloses showed no significant change during fruit maturation regardless of cultivar.

Microbe-Based Plant Defense with a Novel Conprimycin Producing Streptomyces Species

  • Kwak, Youn-Sig
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.54-54
    • /
    • 2015
  • Crops lack genetic resistance to most necrotrophic soil-borne pathogens and parasitic nematodes that are ubiquitous in agroecosystems worldwide. To overcome this disadvantage, plants recruit and nurture specific group of antagonistic microorganisms from the soil microbiome to defend their roots against pathogens and other pests. The best example of this microbe-based defense of roots is observed in disease-suppressive soils in which the suppressiveness is induced by continuously growing crops that are susceptible to a pathogen. Suppressive soils occur globally yet the microbial basis of most is still poorly described. Fusarium wilt, caused by Fusarium oxysporum f. sp. fragariae is a major disease of strawberry and is naturally suppressed in Korean fields that have undergone continuous strawberry monoculture. Here we show that members of the genus Streptomyces are the specific bacterial components of the microbiome responsible for the suppressiveness that controls Fusarium wilt of strawberry. Furthermore, genome sequencing revealed that Streptomyces griseus, which produces a novel thiopetide antibiotic, is the principal species involved in the suppressiveness. Finally, chemical-genetic studies demonstrated that S. griseus antagonizes F. oxysporum by interfering with fungal cell wall synthesis. An attack by F. oxysporum initiates a defensive "cry for help" by strawberry root and the mustering of microbial defenses led by Streptomyces. These results provide a model for future studies to elucidate the basis of microbially-based defense systems and soil suppressiveness from the field to the molecular level.

  • PDF

Intradural Involvement of Multicentric Myxoid Liposarcoma

  • Cho, Su-Hee;Rhim, Seung-Chul;Hyun, Seung-Jae;Bae, Chae-Wan;Khang, Shin-Kwang
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.3
    • /
    • pp.276-280
    • /
    • 2010
  • Liposarcomas are malignant tumors of the soft tissue, with myxoid liposarcoma being the second most common subtype, tending to occur in the limbs, particularly in the thighs. Myxoid liposarcomas have an intermediate prognosis between well-differentiated and pleomorphic tumors. Spinal metastasis is usual but intradural involvement is extremely rare. We present an unusual case of a multicentric myxoid liposarcoma with intradural involvement. A 41-year-old woman complained of tingling sensation on her left arm. Radiological evaluation revealed multiple masses in her cervical spine, abdominal wall, liver, heart and right thigh, all of which were resected. She was histologically diagnosed with small round cell myxoid sarcoma and underwent adjuvant chemotherapy. However, magnetic resonance imaging analysis after 1 year revealed a large metastatic mass with bony invasion at the C6-T1 level. This mass consisted of extradural and intradural components causing severe compression of the spinal cord. She underwent resection via a posterior facetectomy of C6-7 and an anterior C7 corpectomy. However, the patient died of multiple metastases 18 months after the first diagnosis.

The Stress-Activated Signaling (SAS) Pathways of a Human Fungal Pathogen, Cryptococcus neoformans

  • Jung, Kwang-Woo;Bahn, Yong-Sun
    • Mycobiology
    • /
    • v.37 no.3
    • /
    • pp.161-170
    • /
    • 2009
  • Cryptococcus neoformans is a basidiomycete human fungal pathogen that causes meningoencephalitis in both immunocompromised and immunocompetent individuals. The ability to sense and respond to diverse extracellular signals is essential for the pathogen to infect and cause disease in the host. Four major stress-activated signaling (SAS) pathways have been characterized in C. neoformans, including the HOG (high osmolarity glycerol response), PKC/Mpk1 MAPK (mitogen-activated protein kinase), calcium-dependent calcineurin, and RAS signaling pathways. The HOG pathway in C. neoformans not only controls responses to diverse environmental stresses, including osmotic shock, UV irradiation, oxidative stress, heavy metal stress, antifungal drugs, toxic metabolites, and high temperature, but also regulates ergosterol biosynthesis. The PKC(protein kinase C)/Mpk1 pathway in C. neoformans is involved in a variety of stress responses, including osmotic, oxidative, and nitrosative stresses and breaches of cell wall integrity. The $Ca^{2+}$/calmodulin- and Ras-signaling pathways also play critical roles in adaptation to certain environmental stresses, such as high temperature and sexual differentiation. Perturbation of the SAS pathways not only impairs the ability of C. neoformans to resist a variety of environmental stresses during host infection, but also affects production of virulence factors, such as capsule and melanin. A drug(s) capable of targeting signaling components of the SAS pathway will be effective for treatment of cryptococcosis.

Change of Heating Value, pH and FT-IR Spectra of Charcoal at Different Carbonization Temperatures

  • Kwon, Sung-Min;Jang, Jae-Hyuk;Lee, Seung-Hwan;Park, Sang-Bum;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.440-446
    • /
    • 2013
  • To understand transition characteristics from wood to charcoal, Quercus variabilis wood was carbonized at 200, 250, 300, 340, 540 and $740^{\circ}C$, respectively. Heating value, pH and surface property by FT-IR spectroscopy of the carbonized charcoal were investigated. Heating value and pH increased with increasing carbonization temperature from 4500 cal/g and 4.3 of the control wood to 8,000 cal/g and 9 of the charcoal carbonized at $740^{\circ}C$, respectively. From FT-IR spectroscopy, the peaks from O-H, C-H and C-O stretching disappeared during carbonization at 540 and $740^{\circ}C$. Aromatic skeletal vibration at near $1,506{\sim}1,593cm^{-1}$ was repidly increased until $540^{\circ}C$. These results suggest that the chemical and physical characteristics of wood components in cell wall can be easily changed by increasing carbonization temperature and the carbonization seem to be incomplete at temperature below $540^{\circ}C$.

The Effect of Oryzalin on Growth and Gravitropism in Arabidopsis Roots (Oryzalin이 애기장대 뿌리 생장과 굴중성 반응에 미치는 작용)

  • Go, Jin Gyu;Park, Sun Ill;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.109-114
    • /
    • 2021
  • Oryzalin is a dinitroaniline herbicide that has been known to disrupt microtubules. Microtubules and microfilaments are components of cytoskeletons that are implicated in plant cell growth, which requires the synthesis of cellulose when cell walls elongate. In addition, microtubules are also involved in the sedimentation of statoliths, which regulate the perception of gravity in the columella cells of root tips. In this study, we investigated the effect of oryzalin on the growth and gravitropic response of Arabidopsis roots. The role of ethylene in oryzalin's effect was also examined using these roots. Treatment of oryzalin at a concentration of 10-4 M completely inhibited the roots' growth and gravitropic response. At a concentration of 10-6 M oryzalin, root growth was inhibited by 47% at 8 hr when compared to control. Gravitropic response was inhibited by about 38% compared to control in roots treated with 10-6 M oryzalin for 4 hr. To understand the role of oryzalin in the regulation of root growth and gravitropic response, we measured ethylene production in root segments treated with oryzalin. It was found that the addition of oryzalin stimulated ethylene production through the activation of ACC oxidase and ACC synthase genes, which are key components in the synthesis of ethylene. From these findings, it can be inferred that oryzalin inhibits the growth and gravitropic response of Arabidopsis roots by stimulating ethylene production. The increased ethylene alters the arrangement of the microtubules, which eventually interferes with the growth of the cell wall.

The cloning and characterization of the small GTP-binding Protein RacB in rice.

  • Jung, Young-Ho;Jaw, Nam-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.81.2-82
    • /
    • 2003
  • Plants have evolved along with pathogens, and they have developed sophisticated defense systems against specific microorganisms to survive. G-protons are considered one of the upstream signaling components working as a key for the defense signal transduction pathway. For activation and inactivation of G-protein, GTP-biding proteins are involved. GTP -binding proteins are found in all organisms. Small GTP-binding proteins, having masses of 21 to 30kD, belong to a superfamily, often named the Ras supefamily because the founding members are encoded by human Ras genes initially discovered as cellular homologs of the viral ras oncogene. Members of this supefamily share several common structural features, including several guanine nucleotide binding domains and an effector binding domain. However, exhibiting a remarkable diversity in both structure and function. They are important molecular switches that cycle between the GDP-bound inactive form into the GTP-bound active form through GDP/GTP replacement. In addition, most GTP-binding proteins cycle between membrane-bound and cytosolic forms. such as the RAC family are cytosolic signal transduction proteins that often are involved in processing of extracellular stimuli. Plant RAC proteins are implicated in regulation of plant cell architecture secondary wall formation, meristem signaling, and defense against pathogens. But their molecular mechanisms and functions are not well known. We isolated a RacB homolog from rice to study its role of defense against pathogens. We introduced the constitutively active and the dominant negative forms of the GTP-hinging protein OsRacB into the wild type rice. The dominant negative foms are using two forms (full-sequence and specific RNA interference with RacB). Employing southern, and protein analysis, we examine to different things between the wild type and the transformed plant. And analyzing biolistic bombardment of onion epidermal cell with GFP-RacB fusion protein revealed association with the nucle.

  • PDF

Lipoteichoic Acid from Lactobacillus plantarum Inhibits the Expression of Platelet-Activating Factor Receptor Induced by Staphylococcus aureus Lipoteichoic Acid or Escherichia coli Lipopolysaccharide in Human Monocyte-Like Cells

  • Kim, Hangeun;Jung, Bong Jun;Jeong, Jihye;Chun, Honam;Chung, Dae Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1051-1058
    • /
    • 2014
  • Platelet-activating factor receptor (PAFR) plays an important role in bacterial infection and inflammation. We examined the effect of the bacterial cell wall components lipopolysaccharide (LPS) and lipoteichoic acid (LTA) from Lactobacillus plantarum (pLTA) and Staphylococcus aureus (aLTA) on PAFR expression in THP-1, a monocyte-like cell line. LPS and aLTA, but not pLTA, significantly increased PAFR expression, whereas priming with pLTA inhibited LPS-mediated or aLTA-mediated PAFR expression. Expression of Toll-like receptor (TLR) 2 and 4, and CD14 increased with LPS and aLTA treatments, but was inhibited by pLTA pretreatment. Neutralizing antibodies against TLR2, TLR4, and CD14 showed that these receptors were important in LPS-mediated or aLTA-mediated PAFR expression. PAFR expression is mainly regulated by the nuclear factor kappa B signaling pathway. Blocking PAF binding to PAFR using a PAFR inhibitor indicated that LPS-mediated or aLTA-mediated PAF expression affected TNF-${\alpha}$ production. In the mouse small intestine, pLTA inhibited PAFR, TLR2, and TLR4 expression that was induced by heat-labile toxin. Our data suggested that pLTA has an anti-inflammatory effect by inhibiting the expression of PAFR that was induced by pathogenic ligands.