Browse > Article
http://dx.doi.org/10.4014/jmb.1403.03012

Lipoteichoic Acid from Lactobacillus plantarum Inhibits the Expression of Platelet-Activating Factor Receptor Induced by Staphylococcus aureus Lipoteichoic Acid or Escherichia coli Lipopolysaccharide in Human Monocyte-Like Cells  

Kim, Hangeun (School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University)
Jung, Bong Jun (School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University)
Jeong, Jihye (School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University)
Chun, Honam (Danone Pulmuone Co., Ltd. R&D Center, CJ Food Safety Hall, Korea University)
Chung, Dae Kyun (School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.8, 2014 , pp. 1051-1058 More about this Journal
Abstract
Platelet-activating factor receptor (PAFR) plays an important role in bacterial infection and inflammation. We examined the effect of the bacterial cell wall components lipopolysaccharide (LPS) and lipoteichoic acid (LTA) from Lactobacillus plantarum (pLTA) and Staphylococcus aureus (aLTA) on PAFR expression in THP-1, a monocyte-like cell line. LPS and aLTA, but not pLTA, significantly increased PAFR expression, whereas priming with pLTA inhibited LPS-mediated or aLTA-mediated PAFR expression. Expression of Toll-like receptor (TLR) 2 and 4, and CD14 increased with LPS and aLTA treatments, but was inhibited by pLTA pretreatment. Neutralizing antibodies against TLR2, TLR4, and CD14 showed that these receptors were important in LPS-mediated or aLTA-mediated PAFR expression. PAFR expression is mainly regulated by the nuclear factor kappa B signaling pathway. Blocking PAF binding to PAFR using a PAFR inhibitor indicated that LPS-mediated or aLTA-mediated PAF expression affected TNF-${\alpha}$ production. In the mouse small intestine, pLTA inhibited PAFR, TLR2, and TLR4 expression that was induced by heat-labile toxin. Our data suggested that pLTA has an anti-inflammatory effect by inhibiting the expression of PAFR that was induced by pathogenic ligands.
Keywords
Lactobacillus plantarum; Staphylococcus aureus; lipoteichoic acid; platelet-activating factor; Toll-like receptor; monocyte-like cells;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Takeuchi O, Hoshino K, Akira S. 2000. Cutting edge: TLR2- deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J. Immunol. 165: 5392-5396.   DOI
2 Schroder NWJ, Morath S, Alexander C, Hamann L, Hartung T, Zahringer U, et al. 2003. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharidebinding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J. Biol. Chem. 278: 15587-15594.   DOI   ScienceOn
3 Seo HS, Michalek SM, Nahm MH. 2008. Lipoteichoic acid is important in innate immune responses to gram-positive bacteria. Infect. Immunol. 76: 206-213.   DOI   ScienceOn
4 Shimizu T, Mutoh H, Kato S. 1996. Platelet-activating factor receptor. Gene structure and tissue-specific regulation. Adv. Exp. Med. Biol. 416: 79-84.   DOI
5 Castor MG, Rezende BM, Resende CB, Bernardes PT, Cisalpino D, Vieira AT, et al. 2012. Platelet-activating factor receptor plays a role in the pathogenesis of graft-versushost disease by regulating leukocyte recruitment, tissue injury, and lethality. J. Leukoc. Biol. 91: 629-639.   DOI   ScienceOn
6 Dagenais P, Thivierge M, Stankova J, Rola-Pleszczynski M. 1997. Modulation of platelet-activating factor receptor (PAFR) gene expression via NF kappa B in MonoMac-1 cells. Inflamm. Res. 46 (Suppl 2): S161-S162.   DOI
7 Deininger S, Stadelmaier A, von Aulock S, Morath S, Schmidt RR, Hartung T. 2003. Definition of structural prerequisites for lipoteichoic acid-inducible cytokine induction by synthetic derivatives. J. Immunol. 170: 4134-4138.   DOI
8 Fischer W, Mannsfeld T, Hagen G. 1990. On the basic structure of poly (glycerophosphate) lipoteichoic acids. Biochem. Cell Biol. 68: 33-43.   DOI   ScienceOn
9 Fischer W. 1998. Physiology of lipoteichoic acids in bacteria. Adv. Microb. Physiol. 29: 233-302.
10 Bhakdi S, Klonisch T, Nuber P, Fischer W. 1991. Stimulation of monokine production by lipoteichoic acids. Infect. Immunol. 59: 4614-4620.
11 Frostegård J, Huang YH, Rönnelid J, Schäfer-Elinder L. 1997. Platelet-activating factor and oxidized LDL induce immune activation by a common mechanism. Arterioscler. Thromb. Vasc. Biol. 17: 963-968.   DOI
12 Georgieva RN, IIiev IN, Chipeva VA, Dimitonova SP, Samelis J, Danova ST. 2008. Identification and in vitro characterization of Lactobacillus plantarum strains from artisanal Bulgarian white brined cheeses. J. Basic Microbiol. 48: 234-244.   DOI   ScienceOn
13 Behr T, Fischer W, Peter-Katalinic J, Egge H. 1992. The structure of pneumococcal lipoteichoic acid: improved preparation, chemical and mass spectrometric studies. Eur. J. Biochem. 207: 1063-1075.   DOI   ScienceOn
14 Ginsburg I. 2002. Role of lipoteichoic acid in infection and inflammation. Lancet Infect. 2: 171-179.   DOI   ScienceOn
15 Greengerg JW, Fischer W, Joiner KA. 1996. Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor. Infect. Immunol. 64: 3318-3325.
16 Grigg J. 2012. The platelet activating factor receptor: a new anti-infective target in respiratory disease? Thorax 67: 840-841.   DOI
17 Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, et al. 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130: 1071-1082.   DOI   ScienceOn
18 Han SH, Kim JH, Seo HS, Martin MH, Chung GH, Michalek SM, Nahm MH. 2006. Lipoteichoic acid-induced nitric oxide production depends on the activation of platelet-activating factor receptor and Jak2. J. Immunol. 176: 573-579.   DOI
19 Han SH, Kim JK, Martin M, Michalek SM, Nahm MH. 2003. Pneumococcal lipoteichoic acid (LTA) is not as potent as Staphylococcal LTA in stimulating Toll-like receptor 2. Infect. Immunol. 71: 5541-5548.   DOI   ScienceOn
20 Hosoki K, Nakamura A, Nagao M, Hiraguchi Y, Tanida H, Tokuda R, et al. 2012. Staphylococcus aureus directly activates eosinophils via platelet-activating factor receptor. J. Leukoc. Biol. 92: 333-341.   DOI   ScienceOn
21 Hourton D, Delerive P, Stankova J, Staels B, Chapman MJ, Ninio E. 2001. Oxidized low-density lipoprotein and peroxisome-proliferator-activated receptor alpha down-regulate platelet-activating-factor receptor expression in human macrophages. Biochem. J. 354: 225-232.   DOI
22 Iovino F, Brouwer MC, van de Beek D, Molema G, Bijlsma JJ. 2013. Signalling or binding: the role of the plateletactivating factor receptor in invasive pneumococcal disease. Cell Microbiol. 15: 870-881.   DOI   ScienceOn
23 Jang KS, Baik JE, Han SH, Chung DK, Kim BG. 2011. Multispectrometric analyses of lipoteichoic acids isolated from Lactobacillus plantarum. Biochem. Biophys. Res. Commun. 407: 823-830.   DOI   ScienceOn
24 Kim HG, Gim MG, Kim JY, Hwang HJ, Ham MS, Lee JM, et al. 2007. Lipoteichoic acid from Lactobacillus plantarum elicits both the production of interleukin-23p19 and suppression of pathogen-mediated interleukin-10 in THP-1 cells. FEMS Immunol. Med. Microbiol. 49: 205-214.   DOI   ScienceOn
25 Kim HG, Kim NR, Gim MG, Lee JM, Lee SY, Ko MY, et al. 2008. Lipoteichoic acid isolated from Lactobacillus plantarum inhibits lipopolysaccharide-induced TNF-alpha production in THP-1 cells and endotoxin shock in mice. J. Immunol. 180: 2553-2561.   DOI
26 Koltai M, Hosford D, Guinot P, Esanu A, Braquet P. 1991. Platelet activating factor (PAF). A review of its effects, antagonists and possible future clinical implications (Part I). Drugs 42: 9-29.   DOI   ScienceOn
27 Kim HG, Lee SY, Kim NR, Ko MY, Lee JM, Yi TH, et al. 2008. Inhibitory effects of Lactobacillus plantarum lipoteichoic acid (LTA) on Staphylococcus aureus LTA-induced tumor necrosis factor-alpha production. J. Microbiol. Biotechnol. 18: 1191-1196.
28 Knapp S, von Aulock S, Leendertse M, Haslinger I, Draing C, Golenbock DT, van der Poll T. 2008. Lipoteichoic acidinduced lung inflammation depends on TLR2 and the concerted action of TLR4 and the platelet-activating factor receptor. J. Immunol. 180: 3478-3484.   DOI
29 Melnikova VO, Villares GJ, Bar-Eli M. 2008. Emerging roles of PAR-1 and PAFR in melanoma metastasis. Cancer Microenviron. 1: 103-111.   DOI
30 Lacerda-Queiroz N, Rachid MA, Teixeira MM, Teixeira AL. 2013. The role of platelet-activating factor receptor (PAFR) in lung pathology during experimental malaria. Int. J. Parasitol. 43: 11-15.   DOI   ScienceOn
31 Lacerda-Queiroz N, Rodrigues DH, Vilela MC, Rachid MA, Soriani FM, Sousa LP, et al. 2012. Platelet-activating factor receptor is essential for the development of experimental cerebral malaria. Am. J. Pathol. 180: 246-255.   DOI   ScienceOn
32 Mutoh H, Kume K, Sato S, Kato S, Shimizu T. 1994. Positive and negative regulations of human platelet-activating factor receptor transcript 2 (tissue-type) by estrogen and TGF-beta 1. Biochem. Biophys. Res. Commun. 205: 1130-1136.   DOI   ScienceOn