• 제목/요약/키워드: cell surface protein

검색결과 461건 처리시간 0.03초

Cytochalasin B Modulates Macrophage-Mediated Inflammatory Responses

  • Kim, Mi-Yeon;Kim, Jong-Hoon;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • 제22권4호
    • /
    • pp.295-300
    • /
    • 2014
  • The actin cytoskeleton plays an important role in macrophage-mediated inflammatory responses by modulating the activation of Src and subsequently inducing nuclear factor (NF)-${\kappa}B$ translocation. In spite of its critical functions, few papers have examined how the actin cytoskeleton can be regulated by the activation of toll-like receptor (TLR). Therefore, in this study, we further characterized the biological value of the actin cytoskeleton in the functional activation of macrophages using an actin cytoskeleton disruptor, cytochalasin B (Cyto B), and explored the actin cytoskeleton's involvement in morphological changes, cellular attachment, and signaling events. Cyto B strongly suppressed the TLR4-mediated mRNA expression of inflammatory genes such as cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-${\alpha}$, and inducible nitric oxide (iNOS), without altering cell viability. This compound also strongly suppressed the morphological changes induced by lipopolysaccharide (LPS), a TLR4 ligand. Cyto B also remarkably suppressed NO production under non-adherent conditions but not in an adherent environment. Cyto B did not block the co-localization between surface glycoprotein myeloid differentiation protein-2 (MD2), a LPS signaling glycoprotein, and the actin cytoskeleton under LPS conditions. Interestingly, Cyto B and PP2, a Src inhibitor, enhanced the phagocytic uptake of fluorescein isothiocyanate (FITC)-dextran. Finally, it was found that Cyto B blocked the phosphorylation of vasodilator-stimulated phosphoprotein (VASP) at 1 min and the phosphorylation of heat shock protein 27 (HSP27) at 5 min. Therefore, our data suggest that the actin cytoskeleton may be one of the key components involved in the control of TLR4-mediated inflammatory responses in macrophages.

Cholera Toxin B Subunit-Porphyromonas gingivalis Fimbrial Antigen Fusion Protein Production in Transgenic Potato

  • Lee, Jin-Yong;Kim, Mi-Young;Jeong, Dong-Keun;Yang, Moon-Sik;Kim, Tae-Geum
    • Journal of Plant Biotechnology
    • /
    • 제36권3호
    • /
    • pp.268-274
    • /
    • 2009
  • Porphyromonas gingivalis, the gram-negative anaerobic oral bacterium, initiates periodontal disease by binding to saliva-coated oral surface. The cholera toxin B subunit (CTB) genetically linked to FimA1 (1-200 aa) or FimA2 (201-337 aa) of the P. gingivalis fimbrial antigen were introduced into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated transformation method. The integration of CTB-FimA1 or CTB-FimA2 fusion genes were confirmed in the chromosome of transformed leaves by genomic DNA PCR amplification method. Synthesis and assembly of the CTB-FimA fusion proteins into oligomeric structures with pentamer size was detected in transformed tuber extracts by immunoblot analysis. The binding activities of CTB-FimA fusion proteins to intestinal epithelial cell membrane receptors were confirmed by GM1-ganglioside enzyme-linked immunosorbent assay (GM1-ELISA). The ELISA showed that the expression levels of the CTB-FimA1 or CTB-FimA2 fusion proteins were 0.0019, 0.002% of the total soluble protein in transgenic tuber tissues, respectively The synthesis of CTB-FimA monomers and their assembly into biologically active oligomers in transformed potato tuber tissues demonstrates the feasibility of using edible plants for the production of enterocyte targeted fimbrial antigens that could elicit mucosal immune responses.

Phosphatidylinositol 3-kinase functionally compartmentalizes the concurrent $G_s$ signaling during $\beta_2$-adrenergic stimulation

  • Jo, Su-Hyun
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.29-29
    • /
    • 2003
  • Compartmentation of intracellular signaling pathways serves as an important mechanism conferring the specificity of G protein-coupled receptor (GPCR) signaling. In the heart, stimulation of $\beta$$_2$-adrenoceptor ($\beta$$_2$-AR), a prototypical GPCR, activates a tightly localized protein kinase A (PKA) signaling, which regulates substrates at cell surface membranes, bypassing cytosolic target proteins (eg, phospholamban). Although a concurrent activation of $\beta$$_2$-AR-coupled $G_{i}$ proteins has been implicated in the functional compartmentation of PKA signaling, the exact mechanism underlying the restriction of the $\beta$$_2$-AR-PKA pathway remains unclear. In the present study, we demonstrate that phosphatidylinositol 3-kinase (PI3K) plays an essential role in confining the $\beta$$_2$-AR-PKA signaling. Inhibition of PI3K with LY294002 or wortmannin enables $\beta$$_2$-AR-PKA signaling to reach intracellular substrates, as manifested by a robust increase in phosphorylation of phospholamban, and markedly enhances the receptor-mediated positive contractile and relaxant responses in cardiac myocytes. These potentiating effects of PI3K inhibitors are not accompanied by an increase in $\beta$$_2$-AR-induced cAMP formation. Blocking $G_{i}$ or $G_{$\square$$\square$}$ signaling with pertussis toxin or $\beta$ARK-ct, a peptide inhibitor of $G_{$\square$$\square$}$, completely prevents the potentiating effects induced by PI3K inhibition, indicating that the pathway responsible for the functional compartmentation of $\beta$$_2$-AR-PKA siglaling sequentially involves $G_{i}$, $G_{$\square$$\square$}$, and PI3K. Thus, PI3K constitutes a key downstream event of $\beta$$_2$-AR- $G_{i}$ signaling, which confines and negates the concurrent $\beta$$_2$-AR/Gs-mediated PKA signaling.gnaling.

  • PDF

Expression of Anti-breast Cancer Monoclonal Antibody in Transgenic Plant

  • Kim, Deuk-Su;Shao, Yingxue;Lee, Jeong-Hwan;Yoon, Joon-Sik;Park, Se-Ra;Choo, Young-Kug;Hwang, Kyung-A;Ko, Ki-Sung
    • 한국환경농학회지
    • /
    • 제30권4호
    • /
    • pp.390-394
    • /
    • 2011
  • BACKGROUND: Plant expression system for mass production of recombinant proteins has several advantages over other existing expression systems with economical and safety issues. Breast cancer is a cancer originating from breast tissue and comprises almost 25% of all cancers in women world widely. Lewis-Y antigen is difucosylated oligosaccharide and is carried by glycoconjugates at cancer cell surface. In this study, the anti-breast cancer mAb BR55, which recognizes the epitope Lewis-Y, was expressed in the plant expression system. METHODS AND RESULTS: We have developed plant system for production of mAb BR55 with or without KDEL (the ER retention signal). This ER retention signal was attached to C-terminus of protein to help retain the recombinant glycoprotein carrying oligomannose glycans and enhance glycoprotein accumulation. PCR analysis was performed and confirmed the presence of recombinant genes. Western blot validated that the recombinant proteins mAb BR55 with or without KDEL were expressed in transgenic plants, moreover, the expression level of the mAb BR55 with KDEL was higher compared to the mAb BR55 without KDEL. CONCLUSION: These results indicate that KDEL fusion is a good way to produce proteins and plant can be an ideal expression system to obtain proteins and enhance accumulation of proteins.

홍국발효 시호(柴胡)가 Lipopolysaccharide로 유발된 급성 폐 손상에 미치는 영향 (Effects of Red Koji-Fermented Bupleuri Radix Extracts on Lipopolysaccharide-Induced Rat Acute Lung Injury)

  • 서영호;정태영;김종대;최해윤
    • 대한상한금궤의학회지
    • /
    • 제13권1호
    • /
    • pp.21-44
    • /
    • 2021
  • Objective : This study aimed to assess the preventive effect of Bupleuri Radix aqueous extracts (BR) and red koji-fermented BR (fBR) in lipopolysaccharide (LPS)-induced acute lung injury in a rat model. Methods : Rats were administered 30, 60, or 120 mg/kg/day of fBR for 28 days before LPS treatments. All rats were sacrificed 5 h after LPS treatment (500 ㎍/head, intratracheal instillation). Body weights, lung weights, pulmonary transcapillary albumin transit, arterial gas parameters (pH, partial pressure [Pa] of O2, PaCO2), bronchoalveolar lavage fluid (BALF) protein, lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), total cell numbers, neutrophil/alveolar macrophage ratios, lung malondialdehyde (MDA), and myeloperoxidase (MPO) were measured. In addition, histopathological changes including the luminal surface of alveoli (LSA), thickness of alveolar septum, and number of polymorphonuclear neutrophils (PMNs) were checked. Results : LPS injection led to increases in lung weights, pulmonary transcapillary albumin transit, BALF protein, LDH, TNF-α and IL-1β contents, total cells, neutrophil and alveolar macrophage ratios, lung MDA, MPO, alveolar septum thickness, and PMNs, and decreases in PaCO2 and pH of arterial blood and LSA. However, these LPS-induced acute lung injuries were inhibited by pretreatment of 30, 60, and 120 mg/kg of fBR. The most favorable effects were seen with 30 mg/kg fBR as compared with 60 mg/kg of α-lipoic acid and BR. Conclusions : fBR showed preventive effects on LPS-induced acute lung injury, which resembles acute respiratory distress syndrome. The mechanisms of action were likely via antioxidant and anti-inflammatory means.

Ginsenoside Rd protects cerebral endothelial cells from oxygen-glucose deprivation/reoxygenation induced pyroptosis via inhibiting SLC5A1 mediated sodium influx

  • Li, Suping;Yu, Nengwei;Xu, Fei;Yu, Liang;Yu, Qian;Fu, Jing
    • Journal of Ginseng Research
    • /
    • 제46권5호
    • /
    • pp.700-709
    • /
    • 2022
  • Background: Ginsenoside Rd is a natural compound with promising neuroprotective effects. However, the underlying mechanisms are still not well-understood. In this study, we explored whether ginsenoside Rd exerts protective effects on cerebral endothelial cells after oxygen-glucose deprivation/reoxygenation (OGD/R) treatment and its potential docking proteins related to the underlying regulations. Method: Commercially available primary human brain microvessel endothelial cells (HBMECs) were used for in vitro OGD/R studies. Cell viability, pyroptosis-associated protein expression and tight junction protein degradation were evaluated. Molecular docking proteins were predicted. Subsequent surface plasmon resonance (SPR) technology was utilized for validation. Flow cytometry was performed to quantify caspase-1 positive and PI positive (caspase-1+/PI+) pyroptotic cells. Results: Ginsenoside Rd treatment attenuated OGD/R-induced damage of blood-brain barrier (BBB) integrity in vitro. It suppressed NLRP3 inflammasome activation (increased expression of NLRP3, cleaved caspase-1, IL-1β and GSDMD-N terminal (NT)) and subsequent cellular pyroptosis (caspase-1+/PI + cells). Ginsenoside Rd interacted with SLC5A1 with a high affinity and reduced OGD/R-induced sodium influx and potassium efflux in HBMECs. Inhibiting SLC5A1 using phlorizin suppressed OGD/R-activated NLRP3 inflammasome and pyroptosis in HBMECs. Conclusion: Ginsenoside Rd protects HBMECs from OGD/R-induced injury partially via binding to SLC5A1, reducing OGD/R-induced sodium influx and potassium efflux, thereby alleviating NLRP3 inflammasome activation and pyroptosis.

Momordicine I alleviates isoproterenol-induced cardiomyocyte hypertrophy through suppression of PLA2G6 and DGK-ζ

  • Hongming Li;Yumei Qiu;Mengdie Xie;Changsheng Ouyang;Xiaoyun Ding;Hao Zhang;Wei Dong;Yinhua Xiong;Xilan Tang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권1호
    • /
    • pp.75-84
    • /
    • 2023
  • This study aimed to observe the protective effect of momordicine I, a triterpenoid compound extracted from momordica charantia L., on isoproterenol (ISO)-induced hypertrophy in rat H9c2 cardiomyocytes and investigate its potential mechanism. Treatment with 10 μM ISO induced cardiomyocyte hypertrophy as evidenced by increased cell surface area and protein content as well as pronounced upregulation of fetal genes including atrial natriuretic peptide, βmyosin heavy chain, and α-skeletal actin; however, those responses were markedly attenuated by treatment with 12.5 ㎍/ml momordicine I. Transcriptome experiment results showed that there were 381 and 447 differentially expressed genes expressed in comparisons of model/control and momordicine I intervention/model, respectively. GO enrichment analysis suggested that the anti-cardiomyocyte hypertrophic effect of momordicine I may be mainly associated with the regulation of metabolic processes. Based on our transcriptome experiment results as well as literature reports, we selected glycerophospholipid metabolizing enzymes group VI phospholipase A2 (PLA2G6) and diacylglycerol kinase ζ (DGK-ζ) as targets to further explore the potential mechanism through which momordicine I inhibited ISO-induced cardiomyocyte hypertrophy. Our results demonstrated that momordicine I inhibited ISO-induced upregulations of mRNA levels and protein expressions of PLA2G6 and DGK-ζ. Collectively, momordicine I alleviated ISO-induced cardiomyocyte hypertrophy, which may be related to its inhibition of the expression of glycerophospholipid metabolizing enzymes PLA2G6 and DGK-ζ

Ginsenoside compound K reduces ischemia/reperfusion-induced neuronal apoptosis by inhibiting PTP1B-mediated IRS1 tyrosine dephosphorylation

  • Jing, Fu;Liang, Yu;Qian, Yu;Nengwei, Yu;Fei, Xu;Suping, Li
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.274-282
    • /
    • 2023
  • Background: Ginsenoside compound K (CK) stimulated activation of the PI3K-Akt signaling is one of the major mechanisms in promoting cell survival after stroke. However, the underlying mediators remain poorly understood. This study aimed to explore the docking protein of ginsenoside CK mediating the neuroprotective effects. Materials and methods: Molecular docking, surface plasmon resonance, and cellular thermal shift assay were performed to explore ginsenoside CK interacting proteins. Neuroscreen-1 cells and middle cerebral artery occlusion (MCAO) model in rats were utilized as in-vitro and in-vivo models. Results: Ginsenoside CK interacted with recombinant human PTP1B protein and impaired its tyrosine phosphatase activity. Pathway and process enrichment analysis confirmed the involvement of PTP1B and its interacting proteins in PI3K-Akt signaling pathway. PTP1B overexpression reduced the tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) after oxygen-glucose deprivation/reoxygenation (OGD/R) in neuroscreen-1 cells. These regulations were confirmed in the ipsilateral ischemic hemisphere of the rat brains after MCAO/R. Ginsenoside CK treatment reversed these alterations and attenuated neuronal apoptosis. Conclusion: Ginsenoside CK binds to PTP1B with a high affinity and inhibits PTP1B-mediated IRS1 tyrosine dephosphorylation. This novel mechanism helps explain the role of ginsenoside CK in activating the neuronal protective PI3K-Akt signaling pathway after ischemia-reperfusion injury.

인체지방유래 간질세포의 부착 및 연골분화유도를 위한 PLGA 지지체의 플라즈마 처리 효과 (The Effect of the Plasma Treatment on PLGA Scaffold for Adhesion and Chondrogenic Differentiation of Human Adipose-derived Stromal Cells)

  • 동춘희;전영준;조현미;오득영;한동근;이종원;안상태
    • Archives of Plastic Surgery
    • /
    • 제33권1호
    • /
    • pp.46-52
    • /
    • 2006
  • High-density micromass culture was needed to take three dimensions culture with ASCs(adipose derived stromal cells) and chondrogenesis. However, the synthetic polymer has hydrophobic character and low affinity to cells and other biomolecules. Therefore, the surface modification without changes of physical and chemical properties is necessary for more suitable condition to cells and biomolecules. This study was performed to investigate the effect of surface modification of poly (lactic-co-glycolic acid)(PLGA) scaffold by plasma treatment (P(+)) on the adhesion, proliferation and chondrogenesis of ASCs, and not plasma treatment (P(-)). ASCs were isolated from human subcutaneous adipose tissue obtained by lipectomy and liposuction. At 1 hour 30 minutes and 3days after cell seeding onto the P(-) group and the P(+) group, total DNA amount of attached and proliferated ASCs markedly increased in the P(+) group (p < 0.05). The changes of the actin under confocal microscope were done for evaluation of cellular affinity, at 1 hour 30 minutes, the shape of the cells was spherical form in all group. At 3rd day, the shape of the cells was fiber network form and finely arranged in P(+) group rather than in P(-) group. RT-PCR analysis of cartilage-specific type II collagen and link protein were expressed in 1, 2 weeks of induction. Amount of Glycoaminoglycan (GAG) markedly increased in P(+) group(p < 0.05). In a week, extracellular matrix was not observed in the Alcian blue and Safranin O staining. However in 2 weeks, it was observed that sulfated proteoglycan increased in P(+) group rather than in P(-) group. In conclusion, we recognized that plasma treatment of PLGA scaffold could increase the hydrophilic property of cells, and provide suitable environment for high-density micromass culture to chondrogenesis

Interaction between IGFBP-5 and TNFR1

  • Kim, Eun-Jung;Jeong, Mi-Suk;Hwang, Jae-Ryoung;Lee, Je-Ho;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권7호
    • /
    • pp.2019-2024
    • /
    • 2010
  • Insulin-like growth factor binding protein 5 (IGFBP-5) plays an important role in controlling cell survival, differentiation and apoptosis. Apoptosis can be induced by an extrinsic pathway involving the ligand-mediated activation of death receptors such as tumor necrosis factor receptor 1 (TNFR1). To determine whether IGFBP-5 and TNFR1 interact as members of the same apoptosis pathway, recombinant IGFBP-5 and TNFR1 were isolated. The expression and purification of the full-length TNFR1 and truncated IGFBP-5 proteins were successfully performed in E. coli. The binding of both IGFBP-5 and TNFR1 proteins was detected by surface plasmon resonance spectroscopy (BIAcore), fluorescence measurement, electron microscopy, and size-exclusion column (SEC) chromatography. IGFBP-5 indeed binds to TNFR1 with an apparent $K_D$ of 9 nM. After measuring the fluorescence emission spectra of purified IGFBP-5 and TNFR1, it was found that the tight interaction of these proteins is accompanied by significant conformational changes of one or both. These results indicate that IGFBP-5 acts potently as a novel ligand for TNFR1.