• Title/Summary/Keyword: cell surface protein

Search Result 461, Processing Time 0.03 seconds

Surface Plasmon Resonance Imaging Analysis of Hexahistidine-tagged Protein on the Gold Thin Film Coated with a Calix Crown Derivative

  • Chung, Bong-Hyun;Baek, Seung-Hak;Shin, Yong-Beom;Kim, Min-Gon;Ro, Hyeon-Su;Kim, Eun-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.143-146
    • /
    • 2004
  • A surface plasmon resonance (SPR) imaging system was constructed and used to detect the hexahistidine-ubiquitin-tagged human parathyroid hormone fragment (His$\sub$6/-Ub-hPTHF(1-34)) expressed in Escherichia coli. The hexahistidine-specific antibody was immobilized on a thin gold film coated with ProLinker$\^$TM/ B, a novel calixcrown derivative with a bifunctional coupling property that permits efficient immobilizaton of capture proteins on solid matrices. The soluble and insoluble fractions of an E. coli cell lysate were spotted onto the antibody-coated gold chip, which was then washed with buffer (pH 7.4) solution and dried. SPR imaging measurements were carried out to detect the expressed His$\sub$6/-Ub-hPTHF(1-34). There was no discernible protein image in the uninduced cell lysate, indicating that non-specific binding of contaminant proteins did not occur on the gold chip surface. It is expected that the approach used here to detect affinity-tagged recombinant proteins using an SPR imaging technique could be used as a powerful tool for the analyses of a number of proteins in a high-throughput mode.

Heat Shock and Cell Cycle Dependence of Cell Surface Proteins in Mouse Tumor Cells (溫熱處理와 細胞週期에 따른 생쥐 腫瘍細胞의 膜表面蛋白質의 變化)

  • Kang, Man-Sik;Kim, Yunhee
    • The Korean Journal of Zoology
    • /
    • v.26 no.3
    • /
    • pp.155-170
    • /
    • 1983
  • The primary concern has been focused on the response and adaptation of mouse fibroblast tumor cells to heat-shock in the level of membrane surface proteins, using two labeling techniques, lactoperoxidase-catalyzed iodination and galactose oxidase-sodium borohydride. Cells arrested in $G_1$ phase exhibited the highest level of LETS protein and high molecular proteins than did cells passing through $G_1/S, S, G_2$ and M, and unsynchronized cells. Confluent cells were found to show an increase in 125K proteins and a decrease in 130K and 100K proteins selectively. The adaptation processes of tumor cells after heat-shock were observed. All the proteins above 80K were reduced immediately after heat-shock, whereas 70K protein increased markedly 24 hours after heat-shock. The 70K protein and high molecular proteins returned to normal level in 48 hours. The 70K protein was found to be trypsin-sensitive and was similarly labeled by galactose-oxidase as well as by lactoperoxidase. It was, therefore, concluded that 70K protein is glycoprotein located on the surface membrane and might be the HSP 70. Possible function of heat-shock protein on the surface membrane and the relation of this protein to differential heat-sensitivity of tumor cells are discussed.

  • PDF

Identification of Phospholipase C Activated by $GTP{\gamma}S$ in Plasma Membrane of Oat Cell

  • Kim, Hyae-Kyeong;Park, Moon-Hwan;Chae, Quae
    • BMB Reports
    • /
    • v.28 no.5
    • /
    • pp.387-391
    • /
    • 1995
  • In order to investigate whether phospholipase C (PLC) activity in oat celIs is regulated by Gprotein, we have characterized PLC in plasma membranes of oat tissues. To identify the purified plasma membrane, $K^+$-stimulated, $Mg^{2+}$-dependent ATPase activity was measured. The activity of ATPase was shown to be proportional to the concentration of membrane protein. To examine the PLC activity regulated by G-protein, we used the inside-out and outside-out plasma membrane mixture isolated from the oat cells. The plasma membrane mixture showed higher PLC activity than the one of the outside-out plasma membrane. This suggests that PLC activity is located at the cytoplasmic surface of plasma membrane. PLC activity in plasma membrane mixture was dependent on $Ca^{2+}$ with maximum activity at 100 ${\mu}m$ $Ca^{2+}$ and it was inhibited by 1 mM EGTA. Using Sep-pak $Accell^{TM}$ Plus QMA chromatography, we found that inositol 1,4,5-trisphosphate ($IP_3$) was produced in the presence of 10 ${\mu}m$ $Ca^{2+}$. The PLC activity in the membrane was enhanced by an activator of G-protein ($GTP{\gamma}S$) and not by an inhibitor ($GDP{\beta}S$). This indicates that a G-protein is involved in the activation of PLC in the plasma membrane of oat cells.

  • PDF

MT-2007, Protein Kinase C Inhibitor from Aetinomycetes Isolate No. 2007-18 (방선균 분리주 No 2007-18이 생산하는 Protein Kinase C 저해물질, MT-2007)

  • 안종석;박문수;박찬선;윤병대;민태익;안순철;오원근;이현선;윤병대
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.1
    • /
    • pp.54-58
    • /
    • 1993
  • During the screening of inhibitors against protein kinase CCPKC) and the bleb formation of K562 cell induced by phorbol ester from microbial secondary metabolites, MT-2007 was purified by solvent extraction, and chromatographic techniques from Actinomycetes isolate No. 2007-18. It showed completely suppression of bleb formation of K562 cell surface induced by phorbol 12.13dibutylate at the concentration of 503.9 11M and ICso on PKC was 31.4 11M. Its structure was postulated as lasalocid A sodium salt by physico-chemical properties and UV, IR. MS, IH-NMR.

  • PDF

GENE-EXPRESSION PROFILING OF TITANIUM-CELL INTERACTION

  • Kim, Chang-Su;Hwang, Jung-Won;Ryu, Jae-Jun;Shin, Sang-Wan;Sohn, Sung-Hwa;Kim, Ki-Nam;Kim, Meyoung-Kon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.3
    • /
    • pp.393-408
    • /
    • 2005
  • Statement of problem. In the process of bone formation, titanium (Ti) surface roughness is an important factor modulating osteoblastic function. Purpose. This study was carried out to determine the effect of different Ti surface on biologic responses of a human osteoblast-like cell line (MG63). Materials and methods. MG63 cells were cultured on S (smooth), SLA (sandblasted largegrit & acid etching), HA (hydroxyapatite) Ti. The morphology and attachment of the cells were examined by SEM. The cDNAs prepared from total RNAs of MG63 were hybridized to a human cDNA microarray (1,152 elements). Results. The appearances of the surfaces observed with SEM were different in the three types of dental substrates. The surface of SLA and HA were shown to be rougher than S. MG63 cells cultured on SLA and HA were cell-matrix interaction. In the expression of genes involved in osseointegration, upregulated genes were bone morphogenetic protein, Villin, Integrin, Insulin-like growth factors in different surfaces. Downregulated genes were fibroblast growth factor receptor 4, Bcl 2-related protein, collagen, CD4 in different surfaces. Conclusion. The attachment and expression of key osteogenic regulatory genes were enhanced by surface roughness of the dental materials.

Cloning of cDNA Encoding Putative Cellular Receptor Interacting with E2 protein of Hepatitis C Virus (C형 간염바이러스 E2 단백질에 결합하는 추정 세포수용체 cDNA의 클로닝)

  • 이성락;백재은;석대현;박세광;최인학
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.541-550
    • /
    • 2003
  • E2 glycoprotein of hepatitis C virus (HCV) comprises a surface of viral particle together with E1 glycoprotein, and is thought to be involved in the attachment of HCV viral particle to receptor (s) on the permissible cells including hepatocytes, B cells, T cells, and monocytes. We constructed a phage library expressing cellular proteins of hepatocytes on the phage surface, which turned out to be 8.8${\times}$$10^5$ cfu of diversity and carried inserts in 95% of library. We screened both cDNA phage library and 12-mer peptide library to identify the cellular proteins binding to E2 protein. Some intracellular proteins including tensin and membrane band 4.1 which are involved in signal transduction of survival and cytoskeleton organization, were selected from cDNA phage library through several rounds of panning and screening. On the contrary, membrane proteins such as CCR7, CKR-L2, and insulin-like growth factor-1 receptor were identified through screening of peptide library. Phages expressing peptides corresponding to those membrane proteins were bound to E2 protein specifically as determined by neutralization of binding assay. Since it is well known that HCV can infect T cells as well as hepatocytes, we examined to see if E2 protein can bind to CCR7, a member of C-protein coupled receptor family expressed on T cells, using CCR7 transfected tells. Human CCR7 cDNA was cloned into pcDNA3.1(-) vector and transfected into human embryonic kidney cell, 293T, and expressed on the surface of the cell as shown by flow cytometer. Binding assay of E2 protein using CCR7 transfected cells indicated that E2 protein bound to CCR7 by dose-dependent mode, giving rise to the possibility that CCR7 might be a putative cellular receptor for HCV.

Effect of Poly(3-hydroxibutyrate-co-3-hydroxivalerate) Surface with Different Wettability on Fibroblast Behavior

  • Lee, Sang-Jin;Lee, Young-Moo;Khang, Gilson;Kim, Un-Young;Lee, Bong;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.150-157
    • /
    • 2002
  • Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a microbial storage polymer with biodegradable properties. In order to improve the cell compatibility of PHBV surfaces, the physicochemical treatments have been demonstrated. In this study, physical method was corona discharge treatment and chemical method was chloric acid mixture solution treatment. The physicochemically treated PHBV film surfaces were characterized by the measurement of water contact angle, electron spectroscopy for chemical analysis, and scanning electron microscopy (SEM). The water contact angle of the physicochemically treated PHBV surfaces decreased from 75 to 30~40 degree, increased hydrophilicity. due to the introduction of oxygen-based functional group onto the PHBV backbone chain. The mouse NIH/3T3 fibroblasts cultured onto the physicochemically treated PHBV film surfaces with different wettability. The effect of the PHBV surface with different wettability was determined by SEM as counts of cell number and [$^3$H]thymidine incorporation as measures of cell proliferation. As the surface wettability increased, the number of the cell adhered and proliferated on the surface was increased. The result seems closely related with the serum protein adsorption on the physicochemically treated PHBV surface. In conclusion, this study demonstrated that the surface wettabilily of biodegradable polymer as the PHBV plays an important role for cell adhesion and proliferation behavior for biomedical application.

Biosensor for Detection of Yersinia enterocolitica based on imaging ellipsometry (이미지 엘립소미트리를 이용한 예시니아 검출용 바이오센서 개발)

  • Y. M. Bae;Park, K. W.;Park, J. W.;S. I. Cho
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2003.07a
    • /
    • pp.421-426
    • /
    • 2003
  • The Immunosensor based on antigen-antibody binding have been developed for detecting several analytes including antigen, small molecules, and cell. This method can be rapid and show very good detection limits. For Implementation of immunosensor, technologies for immobilization of antibody onto solid surface and detection of protein-protein binding must be developed. (an ellipsis)

  • PDF

A possible mechanism responsible for translocation and secretion an alkaliphilic bacillus sp. S-1 pullulanase

  • Shim, Jae-Kyoung;Kim, Kyoung-Sook;Kim, Cheorl-Ho
    • Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.213-221
    • /
    • 1997
  • The secretion of the alkaliphilic Bacillus sp. S-1 extracellular pullulanase involves translocation across the cytoplasmic membrane of the Gram-positive bacterial cell envelope. Translocation of the intracellular pullulanase PUL-I, was traced to elucidate the mechanism and pathway of protein secretion from an alkaliphilic Bacillus sp. S-1. Pullulanase could be slowly bue quantitatively released into the medium during growth of the cells in medium contianing proteinase K. The released pullulanase lacked the N-terminal domain. The N-terminus is the sole membrane anchor in the pullulanase protein and was not affected by proteases, confirming that it is not exposed on the cell surface. Processing of a 180,000M$\_$r/ pullulanase to a 140,000M$\_$r/ polypeptide has been demonstrated in cell extracts using antibodies raised against 140,000M$\_$r/ extracellular form. Processing of the 180,000 M$\_$r/ protein occured during the preparation of extracts in an alkaline pH condition. A modified rapid extraction procedure suggested that the processing event also occured in vivo. Processing apparently increased the activity of pullulanase. The western blotting analysis with mouse anti-serum against 140-kDa extracellular pullulanase PUL-E showed that PUL-I is processed into PUL-X via intermediate form of PUL-E. Possible explanationa for the translocation are discussed.

  • PDF

Expression of Bacillus macerans Cyclodextrin Glucanotransferase on the Cell Surface of Saccharomyces cerevisiae.

  • Kim, Gyu-Yong;Kim, Myeong-Dong;Han, Nam-Su;Seo, Jin-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.191-193
    • /
    • 2000
  • A whole-cell biocatalyst was constructed by immobilizing an enzyme on the surface of the yeast Saccharomyces cerevisiae. The gene encoding Bacillus macerans cyclodextrin glucanotransferase(CGTase) was fused with the AGA2 gene encoding a small peptide disulfide-linked to the aga1, a cell wall protein of a-agglutinin. The plasmid was introduced S. cerevisiae and expressed in the medium consisting of 10g/L yeast extract, 20g/L peptone, and 20g/L galactose. The activity was detected with the formation of cyclodextrin(CD) from 10g/L soluble starch. Surface display of CGTase was also verified with the halo-test, flow cytometry, and immunofluorescence microscopy. The recombinant S. cerevisiae produced ${\alpha}-cyclodextrin$ more efficiently than the free CGTase by simultaneous fermentation and cyclization as yeast consumes glucose and maltose which are inhibitors for CD synthesis.

  • PDF