• Title/Summary/Keyword: cell surface protein

Search Result 461, Processing Time 0.024 seconds

Molecular Cloning and Recombinant Expression of the Long Form of Leptin Receptor (Ob-Rb) cDNA as Isolated from Rat Spleen

  • Ju, Sung-Kyu;Park, Jung-Hyun;Na, Shin-Young;You, Kwan-Hee;Kim, Kil-Lyong;Lee, Myung-Kyu
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.156-165
    • /
    • 2001
  • Leptin is a circulating non-glycosylated protein that is mainly produced in adipocytes. Leptin acts in the brain to regulate food intake and energy expenditure. Previously we reported our success in the isolation of a partial cDNA of the long form of the leptin receptor, OB-Rb, from rat spleen, and showed that leptin might also play a role in peripheral immune organs. In the present study, for the first time, the complete coding region of OB-Rb cDNA was cloned from rat splenocytes, and its nucleotide sequence was determined. The cDNA was then further expressed in E. coli and mammalian cells, thereby confirming the functional integrity of this receptor. Prokaryotically overexpressed OB-R protein was then used as an immunizing antigen in BALE/c mice to produce leptin receptor-specific antibodies. By using them, we confirmed the cell surface expression of OB-Rb in transfected CHO cells. It is our belief that the reagents, as produced in this study, will be of great use in further studies of the biological role of rat leptin.

  • PDF

Biased G Protein-Coupled Receptor Signaling: New Player in Modulating Physiology and Pathology

  • Bologna, Zuzana;Teoh, Jian-peng;Bayoumi, Ahmed S.;Tang, Yaoliang;Kim, Il-man
    • Biomolecules & Therapeutics
    • /
    • v.25 no.1
    • /
    • pp.12-25
    • /
    • 2017
  • G protein-coupled receptors (GPCRs) are a family of cell-surface proteins that play critical roles in regulating a variety of pathophysiological processes and thus are targeted by almost a third of currently available therapeutics. It was originally thought that GPCRs convert extracellular stimuli into intracellular signals through activating G proteins, whereas ${\beta}$-arrestins have important roles in internalization and desensitization of the receptor. Over the past decade, several novel functional aspects of ${\beta}$-arrestins in regulating GPCR signaling have been discovered. These previously unanticipated roles of ${\beta}$-arrestins to act as signal transducers and mediators of G protein-independent signaling have led to the concept of biased agonism. Biased GPCR ligands are able to engage with their target receptors in a manner that preferentially activates only G protein- or ${\beta}$-arrestin-mediated downstream signaling. This offers the potential for next generation drugs with high selectivity to therapeutically relevant GPCR signaling pathways. In this review, we provide a summary of the recent studies highlighting G protein- or ${\beta}$-arrestin-biased GPCR signaling and the effects of biased ligands on disease pathogenesis and regulation.

Novel Properties for Endoglucanase Acquired by Cell-Surface Display Technique

  • Shi, Baosheng;Ke, Xiaojing;Yu, Hongwei;Xie, Jing;Jia, Yingmin;Guo, Runfang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1856-1862
    • /
    • 2015
  • In order to improve the stability of endoglucanase under thermal and acidic conditions, the endoglucanase gene was fused to the N-terminus of the Saccharomyces cerevisiae pir gene, encoding the cell wall protein PIR. The fusion gene was transformed into Pichia pastoris GS115 for expression. A resulting strain with high expression and high activity was identified by examining resistance to Geneticin 418, Congo red staining, and quantitative analysis of enzyme activity. SDS-PAGE analysis revealed that the endoglucanase was successfully displayed on the yeast cell surface. The displayed endoglucanase (DEG) showed maximum activity towards sodium carboxyl methyl cellulose at approximately 275 IU/g cell dry weight. DEG exhibited greater than 60% residual activity in the pH range 2.5-8.5, higher than free endoglucanase (FEG), which had 40% residual activity at the same pH range. The highest tolerated temperature for DEG was 70℃, much higher than that of FEG, which was approximately 50℃. Moreover, DEG showed 91.1% activity at 65℃ for 120 min, while FEG only kept 77.8% residual activity over the same period. The half-life of DEG was 270 min at 65℃, compared with only 150 min for FEG. DEG could be used repeatedly at least three times. These results suggest that the DEG has broad applications as a yeast whole-cell biocatalyst, due to its novel properties of high catalytic efficiency, acid-thermal stabilities, and reusability.

Optimization of Culture Medium for Novel Cell-Associated Tannase Production from Bacillus massiliensis Using Response Surface Methodology

  • Belur, Prasanna D.;Goud, Rakesh;Goudar, Dinesh C.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.199-206
    • /
    • 2012
  • Naturally immobilized tannase (tannin acyl hydrolase, E.C. 3.1.1.20) has many advantages, as it avoids the expensive and laborious operation of isolation, purification, and immobilization, plus it is highly stable in adverse pH and temperature. However, in the case of cell-associated enzymes, since the enzyme is associated with the biomass, separation of the pure biomass is necessary. However, tannic acid, a known inducer of tannase, forms insoluble complexes with media proteins, making it difficult to separate pure biomass. Therefore, this study optimizes the production of cell-associated tannase using a "protein-tannin complex" free media. An exploratory study was first conducted in shake-flasks to select the inducer, carbon source, and nitrogen sources. As a result it was found that gallic acid induces tannase synthesis, a tryptose broth gives higher biomass, and lactose supplementation is beneficial. The medium was then optimized using response surface methodology based on the full factorial central composite design in a 3 l bioreactor. A $2^3$ factorial design augmented by 7 axial points (${\alpha}$ = 1.682) and 2 replicates at the center point was implemented in 17 experiments. A mathematical model was also developed to show the effect of each medium component and their interactions on the production of cell-associated tannase. The validity of the proposed model was verified, and the optimized medium was shown to produce maximum cell-associated tannase activity of 9.65 U/l, which is 93.8% higher than the activity in the basal medium, after 12 h at pH 5.0, $30^{\circ}C$. The optimum medium consists of 38 g/l lactose, 50 g/l tryptose, and 2.8 g/l gallic acid.

Fabrication of a Superhydrophobic Surface with Adjustable Hydrophobicity and Adhesivity Based on a Silica Nanotube Array

  • Yu, Jae-Eun;Son, Sang-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3378-3382
    • /
    • 2012
  • A superhydrophobic surface with a water contact angle > $150^{\circ}$ has attracted great interest from both fundamental and practical aspects. In this study, we demonstrated that hydrophobicity of a silica nanotube (SNT) array can be easily controlled by the SNT aspect ratio. In addition, the adhesive and anti-adhesive properties were controlled without modifying the hydrophobic surface. Various silica structures on a polydimethylsiloxane substrate were prepared using the desired alumina template. Bundle-arrayed and bowl-arrayed silica surfaces exhibited extraordinary superhydrophobicity due to the large frontal surface area and hierarchical micro/nanostructure. As the strategy used in this study is biocompatible and a wide range of hydrophobicities are capable of being controlled by the SNT aspect ratio, a hydrophobic surface composed of an SNT array could be an attractive candidate for bioapplications, such as cell and protein chips.

Physicochemical Properties of Rice Extrudate with Added Ginger Powder by the Response Surface Regression Analysis (반응 표면 분석에 의한 생강 분말을 첨가한 쌀 압출 성형물의 이화학적 성질)

  • 고광진
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.3
    • /
    • pp.178-188
    • /
    • 1993
  • This research was attempted to investigate changes in physicochemical properties of rice extrudate with added ginger powder extruded by single screw extruder. Graphic three dimensional analysis on response surface regression was used to evaluate effects of extrusion variables on quality factors of the extrudate according to two independent variables, ginger consent 0∼12%, moisture content 14∼26%. The summarized results are as follows : 1) Regarding proximate composition of rice extrudate with added ginger powder, as ginger powder content of raw material Increased, crude tat, crude protein, crude ash and crude fiber increased, while soluble nitrogen free extract decreased. 2) Graphic three dimensional analysis on response surface regression was conducted for each dependent variable which revealed statistically significant relationship with independent variables, 0∼120A ginger and 14∼26% moisture content. Expansion ratio had a critical point as moisture content changed. As ginger and moisture content Increased, bulk density, break strength and water absorption Index Increased, while water solubility Index decreased. The predicted maximum degree of gelatinization in 6.15% ginger and 15.56% moisture content is 88.27%, and lightness decreased as ginger content Increased. According to the microstructure for the cross section of extrudate obsorbed with image analyzer, air cell number and perimeter revealed saddle point, meanwhile total area and fractarea of air cell had critical points as moisture content changed. In view of the results, quality of rice extrudate with added ginger powder was optimum when rice flour was fed to the extruder with 2∼7% singer powder and 15∼20% moisture content.

  • PDF

Effects of Hyperbaric Pressure on Cellular Morphology, Proliferation and Protein Expression of Jurkat Cell

  • Oh, Eun-Ha;Oh, Sang-Nam;Im, Ho-Sub;Lee, Joo-Hyun;Kim, Jin-Young;Moon, Joo-Hee;Hong, Eun-Young;Kim, Yang-Hee;Yang, Min-Ho;Lim, Yong-Chul;Park, Sun-Young;Lee, Eun-Il;Sul, Dong-Geun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.116-123
    • /
    • 2005
  • The application of high pressure on cellular morphology, proliferation and protein expression of Jurkat cells (human T lymphocyte cell line) has been extensively investigated. In the present study, we manufactured a novel pressure chamber that modulates 5% $CO_{2}$, temperature and pressure (up to 3 ATA). Jurkat cells was incubated 2 ATA pressure and analyzed cellular morphology and growth using an electron microscopy and MTT assay. The cells showed the morphological changes in the cell surface, which appeared to cause a severe damage in cell membrane. The growth rate of the cells under 2 ATA pressure decreased as cultured time got increased. Furthermore, a long term exposure of high pressure on Jurkat cells may act as one of the important cellular stresses that leads to inducing cell death. Cellular proteomes were separated by 2-dimensional electrophoresis with pH 3-10 ranges of IPG Dry strips. And many proteins showed significant up-and-down expressions with hyperbaric pressure. Out of all, 10 spots were identified significantly using matrix-assisted laser desorption/ionization-time of fight (MALDI-TOF) mass spectrometry. We and found that 9 protein expressions were decreased and one protein, heat shock protein HSP 60, was increased in Jurkat cells under 2 ATA. Identified proteins were related to lipid metabolism and signal transduction.

Expression of MEK1 Fusion Protein in Yeast for Developing Cell Based Assay System, a Major Substrate of LeTx (Yeast내에서 MEK1 융합 단백질 발현 및 Lethal Factor 활성 검증)

  • Hwang, Hye-Hyun;Kim, Joung-Mok;Choi, Kyoung-Jae;Park, Hae-Chul;Han, Sung-Hwan;Chung, Hoe-Il;Koo, Bon-Sung;Park, Joon-Shik;Yoon, Moon-Young
    • Korean Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.195-198
    • /
    • 2006
  • Lethal toxin is a critical virulence factor of anthrax. It is composed two protein: protective antigen (PA) and lethal factor (LF). PA binds to specific cell surface receptors and, forms a membrane channel that mediates entry of LF into the cell. LF is a zinc-dependent metalloprotease, which cleaves MKKs [MAPK (mitogen-activated protein kinase) kinases] at peptide bonds very close to their N-termini. In this study, we suggest application of cell-based assays in the early phase of drug discovery, with a particular focus on the use of yeast cells. We constructed MEK1 expression system in yeast to determine LF activity and approached cell-based assay system to screen inhibitors, in which the results covering the construction of LF-substrate in yeast expression vector, expression, and LF-mediated proteolysis of substrate were described. These results could provided the basic steps in design of cell-based assay system with the high efficiency, rapidly and easy way to screening of inhibitors.

The primary cilium as a multiple cellular signaling scaffold in development and disease

  • Ko, Hyuk-Wan
    • BMB Reports
    • /
    • v.45 no.8
    • /
    • pp.427-432
    • /
    • 2012
  • Primary cilia, single hair-like appendage on the surface of the most mammalian cells, were once considered to be vestigial cellular organelles for a past century because of their tiny structure and unknown function. Although they lack ancestral motility function of cilia or flagella, they share common ground with multiciliated motile cilia and flagella on internal structure such as microtubule based nine outer doublets nucleated from the base of mother centrioles called basal body. Making cilia, ciliogenesis, in cells depends on the cell cycle stage due to reuse of centrioles for cell division forming mitotic spindle pole (M phase) and assembling cilia from basal body (starting G1 phase and maintaining most of interphase). Ciliary assembly required two conflicting processes such as assembly and disassembly and balance between these two processes determines the length of cilia. Both process required highly conserved transport system to supply needed substance to grow tip of cilia and bring ciliary turnover product back to the base of cilia using motor protein, kinesin and dynein, and transport protein complex, IFT particles. Disruption of ciliary structure or function causes multiple human disorder called ciliopathies affecting disease of diverse ciliated tissues ranging from eye, kidney, respiratory tract and brain. Recent explosion of research on the primary cilia and their involvement on animal development and disease attracts scientific interest on how extensively the function of cilia related to specific cell physiology and signaling pathway. In this review, I introduce general features of primary cilia and recent progress in understanding of the ciliary length control and signaling pathways transduced through primary cilia in vertebrates.

Rapid Detection of Salmonella spp. by Antibody-Immobilized Piezoelectric Crystal Biosensor (고정화법을 달리하여 제조한 압전류적 항체 센서에 의한 Salmonella spp.의 신속 검출)

  • 박인선;김우연;김남수
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.3
    • /
    • pp.206-212
    • /
    • 1998
  • An improved antibody-coated sensor system based on quartz crystal microbalance was developed for the detection of Salmonella spp. An antibody against Salmonella common structural antigen was immobilized onto one gold electrode of the piezoelectric quartz crystal surface by various immobilization procedures. The best results in sensitivity and stability were obtained with the thin layers of protein A and 3,3'-dithiopropionimidate.2HCI(DTBP), a homobifunctional thiol-cleavable crosslinker. After the addition of a S. typhimurium suspension into a reaction cell with 0.1 M sodium phosphate buffer, pH 7.2, the resonant frequency owing to S. typhimurium adsorption decreased conspicuously. The antibody-immobilized crystals prepared by the gold-protein A complex formation and DTBP thiolation showed the frequency shifts of 80 and 283 Hz, respectively. The time required for maximum frequency shift was about 30~60 min. The antibody-coated crystal could be reused for 6~8 consecutive assays.

  • PDF