• Title/Summary/Keyword: cell permeability

Search Result 607, Processing Time 0.021 seconds

Rejection Properties of Aromatic Pesticides by a Hollow Fiber NF Membrane (중공사 나노여과막을 이용한 방향족 농약의 배제 특성)

  • Jung, Yong-Jun;Kiso, Yoshiaki;Park, Soon-Gil;Kim, Jong-Yong;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.296-300
    • /
    • 2004
  • The rejection properties of 6 aromatic pesticides were evaluated by a continuous flow system equipped with a hollow fiber NF membrane. Different from the separation experiment of batch cell, the rejection and the removal could be calculated exactly because the concentration of feed, permeate and retentate was separately obtained. The lowest and the highest rejection were found in carbaryl(54.8%) and methoxychlor(99.2%), respectively, and the removals were always shown higher than rejections. This may be caused by some reasons such as the solute adsorption on the membrane, the variation of feed concentration. Although molecular weight, molecular width regarded as solute characteristics and log P(n-octanol/water partition coefficient) as hydrophobicity could be applied to explain the rejection property, these factors should be considered together for better analysis. According to the higher relationship between log B(solute permeability) and molecular weight, it was revealed that the solute separation with this membrane was influenced more by molecular weight.

Evaluation of preconsolidation stress by shear wave velocity

  • Yoon, Hyung-Koo;Lee, Changho;Kim, Hyun-Ki;Lee, Jong-Sub
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.275-287
    • /
    • 2011
  • The behaviors of saturated soils such as compressibility and permeability are distinguished by preconsolidation stress. Preconsolidation stress becomes an important design parameter in geotechnical structures. The goal of this study is to introduce a new method for the evaluation of preconsolidation stress based on the shear wave velocity at small strain, using Busan, Incheon, and Gwangyang clays in Korea. Standard consolidation tests are conducted by using an oedometer cell equipped with bender elements. The preconsolidation stresses estimated by shear wave velocity are compared with those evaluated by the Casagrande, constrained modulus, work, and logarithmic methods. The preconsolidation stresses estimated by the shear wave velocity produce very similar values to those evaluated by the Onitsuka method (one of the logarithmic methods), which yields an almost real preconsolidation stress. This study shows that the shear wave velocity method provides a reliable method for evaluating preconsolidation stress and can be used as a complementary method.

Anti-allergic Actions of the Leaves of Castnea crenata and Isolation of an Active Component Responsible for the Inhibition of Mast Cell Degranulation

  • Lee, Eun;Choi, Eun-Ju;Cheong, Ho;Kim, Young-Ran;Ryu, Shi-Yong;Kim, Kyeong-Man
    • Archives of Pharmacal Research
    • /
    • v.22 no.3
    • /
    • pp.320-323
    • /
    • 1999
  • The anti-allergic actions of the leaves of Castanea crenata (Fagaceae) were studied. The water extract demonstrated potent anti-allergic actions in in vivo and in vitro experiments. The oral or intraperitoneal administration of the extract (100 or 200 mg/kg) caused a significant inhibition of the 48 hr-PCA (up to 90%) and the vascular permeability induced by histamine or serotonin in rats (about 80%). The anaphylactic release of ${\beta}$-hexosaminidase for RBL-2H3 cells was also significantly inhibited by the extract in as dose-dependent manner with an IC50 value of 230 $\mu\textrm{g}$/ml. The activity-guided fractionation of the extract, based on the determination of inhibitor effect upon the release of ${\beta}$-hexosaminidase, led to the isolation of quercetin as an active principle responsible for the inhibition of degranulation.

  • PDF

Protective Effect of Right Ventricular Mitochondrial Damage by Cyclosporine A in Monocrotaline-induced Pulmonary Hypertension

  • Lee, Dong Seok;Jung, Yong Wook
    • Korean Circulation Journal
    • /
    • v.48 no.12
    • /
    • pp.1135-1144
    • /
    • 2018
  • Background and Objectives: Mitochondria play a key role in the pathophysiology of heart failure and mitochondrial permeability transition pore (MPTP) play a critical role in cell death and a critical target for cardioprotection. The aim of this study was to evaluate the protective effects of cyclosporine A (CsA), one of MPTP blockers, and morphological changes of mitochondria and MPTP related proteins in monocrotaline (MCT) induced pulmonary arterial hypertension (PAH). Methods: Eight weeks old Sprague-Dawley rats were randomized to control, MCT (60 mg/kg) and MCT plus CsA (10 mg/kg/day) treatment groups. Four weeks later, right ventricular hypertrophy (RVH) and morphological changes of right ventricle (RV) were done. Western blot and reverse transcription polymerase chain reaction (RT-PCR) for MPTP related protein were performed. Results: In electron microscopy, CsA treatment prevented MCT-induced mitochondrial disruption of RV. RVH was significantly increased in MCT group compared to that of the controls but RVH was more increased with CsA treatment. Thickened medial wall thickness of pulmonary arteriole in PAH was not changed after CsA treatment. In western blot, caspase-3 was significantly increased in MCT group, and was attenuated in CsA treatment. There were no significant differences in voltage-dependent anion channel, adenine nucleotide translocator 1 and cyclophilin D expression in western blot and RT-PCR between the 3 groups. Conclusions: CsA reduces MCT induced RV mitochondrial damage. Although, MPTP blocking does not reverse pulmonary pathology, it may reduce RV dysfunction in PAH. The results suggest that it could serve as an adjunctive therapy to PAH treatment.

Decrease in hydrogen crossover through membrane of polymer electrolyte membrane fuel cells at the initial stages of an acceleration stress test

  • Hwang, Byung Chan;Oh, So Hyeong;Lee, Moo Seok;Lee, Dong Hoon;Park, Kwon Pil
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2290-2295
    • /
    • 2018
  • An acceleration stress test (AST) was performed to evaluate the durability of a polymer membrane in a polymer electrolyte membrane fuel cell (PEMFC) for 500 hours. Previous studies have shown that hydrogen crossover measured by linear sweep voltammetry (LSV) increases when the polymer membrane deteriorates in the AST process. On the other hand, hydrogen crossover of the membrane often decreases in the early stages of the AST test. To investigate the cause of this phenomenon, we analyzed the MEA operated for 50 hours using the AST method (OCV, RH 30% and $90^{\circ}C$). Cyclic voltammetry and transmission electron showed that the electrochemical surface area (ECSA) decreased due to the growth of electrode catalyst particles and that the hydrogen crossover current density measured by LSV could be reduced. Fourier transform infrared spectroscopy and thermogravimetric/differential thermal analysis showed that -S-O-S- crosslinking occurred in the polymer after the 50 hour AST. Gas chromatography showed that the hydrogen permeability was decreased by -S-O-S- crosslinking. The reduction of the hydrogen crossover current density measured by LSV in the early stages of AST could be caused by both reduction of the electrochemical surface area of the electrode catalyst and -S-O-S- crosslinking.

Improving Gas Barrier Property of Polymer Based Nanocomposites Using Layer by Layer Deposition Method for Hydrogen Tank Liner

  • Lee, Suyeon;Han, Hye Seong;Seong, Dong Gi
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.121-126
    • /
    • 2022
  • Owing to advantages of polymeric materials for hydrogen tank liner like light-weight property and high specific strength, polymer based composites have gained much attention. Despite of many benefits, polymeric materials for fuel cell tank cause problems which is critical to applications as low gas barrier property, and poor processability when adding fillers. For these reasons, improving gas barrier property of polymer composites is required to study for expanding application fields. This work presents impermeable polymer nanocomposites by introducing thin barrier coating using layer by layer (LBL) deposition method. Also, bi-layered and quad-layered nanocomposites were fabricated and compared for identifying relationship between deposition step and gas barrier property. Reduction in gas permeability was observed without interrupting mechanical property and processability. It is discussed that proper coating conditions were suggested when different coating materials and deposition steps were applied. We investigated morphology, gas barrier property and mechanical properties of fabricated nanocomposites by FE-SEM, Oxygen permeation analyzer, UTM, respectively. In addition, we revealed the mechanism of barrier performance of LBL coating using materials which have high aspect ratio.

Lonicera japonica inhibited the oxidative Stress induced by the heavy metal (중금속 유도 산화적 스트레스에 대한 금은화의 세포 보호 효과)

  • Yeom, Seung-Hee;Bak, Seon Been;Park, Sun-Dong;Park, Kwang-Il;Kim, Young Woo
    • Herbal Formula Science
    • /
    • v.30 no.3
    • /
    • pp.155-163
    • /
    • 2022
  • Objectives : Lonicera japonica is known for anti-inflammation and antibiotic effect in Korean medicine. This study aimed for investigating the cytoprotective effect of Lonicera japonica extract (LJE) for HepG2 cells against arachidonic acid (AA)+iron-induced oxidative stress. Methods : The effect of LJE on cell viability was assessed by MTT assay. ROS assay was selected to assess antioxidant effect of LJE. To assess LJE's effect on mitochondrial function, flow cytometric analysis was operated. And immunoblot analysis was used to establish the underlying mechanism of LJE. Results : LJE protected HepG2 cells against AA+iron-induced oxidative stress by phosphorylation of liver kinase B1 and blocked the decline of procaspase 3. Also, LJE preserved the mitochondrial membrane permeability induced by AA+iron. Conclusion : LJE protected the hepatocyte from AA+iron-induced oxidative stress by activation of LKB1 by the preservation of mitochondrial functions.

What are the Possible Roles of CO2 on Stomatal Mechanism? (기공 메커니즘에 대한 CO2의 역할은 무엇인가?)

  • Lee, Joon Sang
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.1
    • /
    • pp.130-134
    • /
    • 2016
  • How does $CO_2$ affect on the stomatal mechanism? The mechanism of stomatal opening by $CO_2$ is not clear as it is difficult to see $CO_2$ effect on light-induced stomatal opening. Furthermore, stomata may react differently according to the concentration of $CO_2$. The significance of the possible endogenous rhythms must consider to understand on $CO_2$-related response. It is clear that $CO_2$ has an effect on the accumulation of osmotic materials which determines the degree of stomatal apertures because it is known that stomata open in the condition of the reduced $CO_2$ concentration. However, it is not fully understood how $CO_2$ leads to the stomatal opening. It has been thought that $CO_2$ can not affect on the ion fluxes which determines the increase of osmotic potential in guard cells. However, in this study, the changes of guard cell membrane permeability by $CO_2$ have been focused on. There are many reports that $CO_2$ related reactions are dominant when the leaf is exposed to certain a mount of $CO_2$. The hypothesis of the stomatal opening by light is based on the increase of osmotic materials in guard cells including $K^+$, $Cl^-$, sucrose and $malate^{2-}$. It was reported that $CO_2$ induced a big hyperpolarization indicating that $H^+$ was extruded to the cell outside. It was also found that $CO_2$ caused guard cell membrane hyperpolarization in the intact leaf up to 3 or 4 times higher than that of light induced membrane hyperpolarization. These results represent that $CO_2$ can affect on the change of physical characteristics which affects on the change of the membrane permeability.

Cellular Protective Effect and Liposome Formulation for Enhanced Transdermal Delivery of Persicaria hydropiper L. Extract (여뀌 추출물의 세포 보호 작용과 피부 흡수 증진을 위한 리포좀 제형 연구)

  • Kim, Jung-Eun;Lee, Hye-Jin;Lim, Myoung-Sun;Park, Min-A;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.1
    • /
    • pp.15-31
    • /
    • 2012
  • In our previous studies, the antioxidant, anti-aging, and antibacterial activities of Persicaria hydropipier L. extract, and the moisturizing effect of cream containing P. hydropipier extract were investigated. In this study, the cellular protective effects of P. hydropipier extract and isoquercitrin, main component from P. hydropipier in $^1O_2$-induced photohemolysis of human erythrocytes and ultraviolet B (UVB)-exposed HaCaT cells were investigated. Liposomes such as ethosome and elastic liposome for enhanced transdermal delivery were prepared. Size, loading efficiency, stability, and cumulative permeated amounts of ethosomes and elastic liposomes were evaluated. P. hydropipier extract and isoquercitrin showed more prominent cellular protective effect than (+)-${\alpha}$-tocopherol, known as lipid antioxidant at $5{\mu}g/mL$. P. hydropipier extract didn't show any characteristics of cytotoxicity at $50{\mu}g/mL$. When HaCaT cells were exposed to a single large dose ($400mJ/cm^2$) of UVB, the extract protected the cells against UVB radiation in a concentration dependent manner ($12.5{\sim}50{\mu}g/mL$). Cell viability of HaCaT cells exposed to UVB $400mJ/cm^2$ was increased by treatment with P. hydropipier extract or isoquercitrin from 36 % (cell viability of positve control groups) to 90 % (cell viability of P. hydropipier extract or isoquercitrin- treated groups). The size of 0.04 % P. hydropiper extract loaded ethosomes was 173.0 nm and the loading efficiency was 55.58 %. 0.04 % P. hydropiper extract loaded ethosomes were stable with as monodisperse particles for 1 week. The ethosome exhibited more skin permeability than general liposome and ethanol solution. The optimal ratio of lipid to surfactant ($Tego^{(R)}$ care 450) of 0.1 % P. hydropiper extract loaded elastic liposomes was observed to be 95 : 5. Vesicle size of 0.1 % P. hydropiper extract loaded elastic liposome was 176.5 nm. The deformability index of the elastic liposome was 16.4. The loading efficiency was 68.8 %. The elastic liposome containing P. hydropiper extract showed more skin permeability than liposome without surfactant ($Tego^{(R)}$ care 450).

The Studies on the Development of Low Irritable Preservative System with Phenoxyethanol in Cosmetics (Phenoxyethanol을 이용한 저자극 방부시스템 개발에 관한 연구)

  • Ahn, Gi-Woong;Lee, Chn-Mong;Kim, Hyeong-Bae;Jeong, Ji-Hen;Jo, Byoung-Kee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.43-49
    • /
    • 2005
  • Recently, according as people who have sensitive skin increase, we've been giving more importance to the safety of cosmetics. Especially, preservative is known to be one of the main stimuli which cause side-effects of cosmetics. However, there have been few reports describing cell cytotoxicity, skin penetration, oil-aqueous phase partition, anti-microbial activity of preservatives and their correlation with skin irritation. The study is aimed to develop low irritable preservative system with phenoxyethanol, one of the most commonly used preservatives in cosmetics, considering various factors mentioned above. According to our results of cell cytotoxicity against human normal fibroblasts by means of MTT assay, phenoxyethanol showed the lowest cytotoxicity when compared to other preservatives tested (cytotoxicity: pro-pylparaben > butylparaben > ethylparaben > methylparaben > triclosan > phenoxyethanol), but human patch test for assessing shin primary irritation revealed that phenoxyethanol has higher skin irritation than methylparaben and triclosan. We performed in vitro skin penetration test using horizontal Franz diffusion cells with skin membrane prepared from hairless mouse (5 ${\~}$ 8 weeks, male) to evaluate the rate of skin penetration of preservatives. From the results, we found that the higher irritable property of phenoxyethanol in human skin correlates with its predominant permeability (skin penetration: phenoxyethanol > methylparaben > ethylparaben > propylparaben > butylfaraben > triclosan). Therefore, we made an effort to reduce skin permeability of phenoxyethanol and found that not only the rate of skin penetration of phenoxyethanol but also its skin irritation is dramatically reduced in formulas containing oils with low polarity. In the experiments to investigate the effect of oil polarity on the oil-aqueous phase partition of phenoxyethanol, more than $70\%$ of phenoxyethanol was partitioned in aqueous phase in formulas containing oils with low polarity, while about $70 {\~} 90\%$ of phenoxyethanol was partitioned in oil phase in formulas containing oils with high polarity. Also, in aqueous phase phenoxyethanol showed greater anti-microbial activity. Conclusively, it appears that we can develop less toxic preservative system with reduced use dosage of phenox-yethanol and its skin penetration by changing oil composition in formulas.