• Title/Summary/Keyword: cell permeability

Search Result 604, Processing Time 0.029 seconds

The Molecular Insight into the Vascular Endothelial Growth Factor in Cancer: Angiogenesis and Metastasis (암의 혈관내피 성장인자에 대한 분자적 통찰: 혈관신생과 전이)

  • Han Na Lee;Chae Eun Seo;Mi Suk Jeong;Se Bok Jang
    • Journal of Life Science
    • /
    • v.34 no.2
    • /
    • pp.128-137
    • /
    • 2024
  • This review discusses the pivotal role of vascular endothelial growth factors (VEGF) in angiogenesis and lymphangiogenesis, vital processes influencing vascular permeability, endothelial cell recruitment, and the maintenance of tumor-associated blood and lymphatic vessels. VEGF exerts its effects through tyrosine-kinase receptors, VEGFR-1, VEGFR-2, and VEGFR-3. This VEGF-VEGFR system is central not only to cancer but also to diseases arising from abnormal blood vessel and lymphatic vessel formation. In the context of cancer, VEGF and its receptors are essential for the development of tumor-associated vessels, making them attractive targets for therapeutic intervention. Various approaches, such as anti-VEGF antibodies, receptor antagonists, and VEGF receptor function inhibitors, are being explored to interfere with tumor growth. However, the clinical efficacy of anti-angiogenic agents remains uncertain and necessitates further refinement. The article also highlights the physiological role of VEGFs, emphasizing their involvement in endothelial cell functions, survival, and vascular permeability. The identification of five distinct VEGFs in humans (VEGF-A, VEGF-B, VEGF-C, VEGF-D, and PLGF) is discussed, along with the classification of VEGFRs as typical receptor tyrosine kinases with distinct signaling systems. The family includes VEGFR-1 and VEGFR-2, crucial in tumor biology and angiogenesis, and VEGFR-3, specifically involved in lymphangiogenesis. Overall, this review has provided a comprehensive overview of VEGF and VEGFR, detailing their roles in various diseases, including cancer. This is expected to further facilitate the utilization of VEGF and VEGFR as therapeutic targets.

The Role of Hydroxyl Radical in the Pathogenetic Mechanism of Endotoxin-Induced Acute Lung Injury in Rats (내독소에 의한 백서의 급성 폐손상에서 Hydroxyl Radical의 병인론적 역할에 관한 연구)

  • Shim, Young-Soo;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Kim, Keun-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.39 no.2
    • /
    • pp.120-130
    • /
    • 1992
  • Background: Although there have been many studies on the pathogenetic mechanism of acute lung injury, it is still elusive. Recently interests have been focused on the role of oxygen free radicals. But the effect of hydroxyl radical on the neutrophil mobilization and the alveolar-capillary permeability is not clear especially in the endotoxin-induced acute lung injury model of rats. This investigation was performed to evaluate the pathogenetic role of hydroxyl radical on the neutrophil accumulation into the lung and the increased alveolar-capillary permeability in the endotoxin-induced acute lung injury in rats. Method: Fifty rats were divided into four groups: vehicle control group (n=5, 6hrs; n=5, 24hrs), endotoxin-treated group (n=10, 6hrs; n=10, 24hrs), Dimethylthiourea (DMTU)-pretreated group (n=10, 6hrs), and deferoxamine (DFX)-pretreated group (n=10, 6hrs). Thirty minutes before sacrifice, $^{125}I$-tagged bovine serum albumin was injected. Six and twenty four hours after endotoxin injection, the rats were sacrificed, and the radioactivity of lung tissue and peripheral blood was counted. Permeability index was defined as the ratio of radioactivity between lung tissue and peripheral blood. Another set of rats (n=52) were divided into the same four groups as before [vehicle control group (n=5, 6hrs; n=5, 24hrs), endotoxin·treated group (n=7, 6hrs; n=8, 24hrs), DMTU-pretreated group (n=6, 6hrs; n=9, 24hrs), and DFX-pretreated group (n=5, 6hrs; n=7, 24hrs)], and were sacrificed 6 and 24 hours after endotoxin injection. In these rats, cell profile of peripheral blood and bronchoalveolar lavage fluid was evaluated, and the pathologic examination of lung tissue was performed. Results: 1) Increased alveolar-capillary permeability was observed 6 hours after endotoxin injection, which was normalized after 24 hours, and this increase was attenuated by pretreatment with DMTU and DFX. 2) Neutrophil sequestration into the lung was observed 24 hours after endotoxin administration, but this was not influenced by DMTU and DFX pretreatment. Conclusion: These results suggest that hydroxyl radical would not be involved in the sequestration of neutrophils into the lung, but plays an important role in the increase of alveolar-capillary permeability in the endotoxin-induced acute lung injury in rats.

  • PDF

AN EXPERIMENTAL STUDY OF THE IRRADIATION EFFECTS ON THE CAPILLARY AND ENDOTHEILIAL CELL OF THE RAT SUBMANDIBULAR GLAND (방사선조사가 악하선 미세혈관과 내피세포에 미치는 영향에 관한 실험적 연구)

  • Yoo Young-Ah;Sohn Jeong-Ick;Choi Mi;Bae Yong-Chul;Choi Karp-Shik
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.24 no.1
    • /
    • pp.67-77
    • /
    • 1994
  • The purpose of this study was to investigate the irradiatiion effects on the capillary and endothelial cell in the submandibular gland. Sprague-Dawley strain male rats were singly irradiated to their neck region with the dose of 5Gy by 6MV X-irradiation and sacrificed on the 6 hours, 12 hours, 1, 3, 7, and 14days after irradiation. The authors observed the histological changes of the capillary at H & E and PAS staining under a light microscope, and also observed the ultrastructural changes of the endothelial cell using a transmission electron microscope. The obtaining results were as follows: 1. In the light microscopic examination, the capillary density was slightly increased on the 1day after irradiation, and increased until the 7 days after irradiatiion. After then, capillary density was apparently decreased. 2. The reaction to PAS staining at acinar cells was decreased on the 6 hours after irradiation, and recovered on the 7days after irradiation. But reaction was decreased on the 14days after irradiation agan, after then, gradually recovered with days. 3. In the transmission electron microscopic examination, mild proliferation of cytoplasmic process of the endothelial cell and reduction in luminal size were observed just after irradiation. After then, nuclear degeneration, marked proliferation of cytoplasmic process, thickened basal lamina, and numerous cytoplasmic vesicles were observed on the 1day after irradiation. These changes were recovered to normal on the 14days after 5Gy group, but not with 10Gy irradiation group. And destruction of endothelial cell and loss of basal lamina were not observed in both groups. 4. From the above results, reduction in luminal size, proliferation of cytoplasmic process and thickening of basal lamina were observed as the irradiation effects on the capillary and endothelial cell of the submandibular gland. And also, these changes may induce increase in capillary number and endothelial permeability by means of increase of cytoplasmic vesicle formation. The changes appeared earlier and more prominent in 10Gy irradiated group than in 5Gy irradiated group.

  • PDF

The Effects of Fucoidan on the Activation of Macrophage and Anticancer in Gastric Cancer Cell (Fucoidan의 면역세포 활성 및 위암 세포주에서의 항암효과)

  • An, In-Jung;Cho, Sung-Dae;Kwon, Jung-Ki;Kim, Hye-Ri;Yu, Hyun-Ju;Jung, Ji-Youn
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.4
    • /
    • pp.406-414
    • /
    • 2012
  • This study was designed to investigate the effect of fucoidan on the activation of macrophage and on induction of apoptosis in AGS cell. To measure the activity of macrophages, NO and TNF-${\alpha}$ assays were performed in Raw 264.7 cell. Treatment with fucoidan significantly increased production of NO and TNF-${\alpha}$, indicating activation of macrophages. The result of MTT assay shows that cell viability was significantly decreased in a dose and time-dependent manner. Fucoidan increased to enhance mitochondrial membrane permeability, as well as the cytochrome c release from the mitochondria. Fucoidan decreased Bcl-2 and XIAP expression, whereas the expression of Bax was increased in a time-dependent manner compared to the control. In addition, the active forms of caspase-9 were increased, and the inactivation of Akt was decreased in a time-dependent manner. Caspase inhibitor, z-VAD-FMK, canceled the apoptosis of fucoidan, expression of Bax and caspase-9 were decrease. These results indicate that fucoidan induces activation of macrophage and apoptosis through activation of caspase on AGS cell.

Electrochemical Behavior of Cathode Catalyst Layers Prepared with Propylene Glycol-based Nafion Ionomer Dispersion for PEMFC (프로필렌글리콜에 분산된 나피온 이오노머로 제조된 공기극 촉매층의 연료전지 성능 특성 연구)

  • Woo, Seunghee;Yang, Tae-Hyun;Park, Seok-Hee;Yim, Sung-Dae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.512-518
    • /
    • 2019
  • To develop a membrane electrode assembly (MEA) with lower Pt loading and higher performance in proton exchange membrane fuel cells (PEMFCs), it is an important research issue to understand interfacial structure of Pt/C catalyst and ionomer and design the catalyst layer structure. In this study, we prepared short-side-chain Nafion-based ionomer dispersion using propylene glycol (PG) as a solvent instead of water which is commonly used as a solvent for commercially available ionomers. Cathode catalyst layers with different ionomer content from 20 to 35 wt% were prepared using the ionomer dispersion for the fabrication of four different MEAs, and their fuel cell performance was evaluated. As the ionomer content increased to 35 wt%, the performance of the prepared MEAs increased proportionally, unlike the commercially available water-based ionomer, which exhibited an optimum at about 25 wt%. Small size micelles and slow evaporation of PG in the ionomer dispersion were effective in proton transfer by inducing the formation of a uniformly structured catalyst layer, but the low oxygen permeability problem of the PG-based ionomer film should be resolved to improve the MEA performance.

IPA and its precursors differently modulate the proliferation, differentiation, and integrity of intestinal epithelial cells

  • Shamila Ismael;Catarina Rodrigues ;Gilberto Maia Santos ;Ines Castela ;Ines Barreiros-Mota ;Maria Joao Almeida ;Conceicao Calhau ;Ana Faria ;Joao Ricardo Araujo
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.616-630
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Indole-3-propionic acid (IPA) is a tryptophan-derived microbial metabolite that has been associated with protective effects against inflammatory and metabolic diseases. However, there is a lack of knowledge regarding the effects of IPA under physiological conditions and at the intestinal level. MATERIALS/METHODS: Human intestinal epithelial Caco-2 cells were treated for 2, 24, and/or 72 h with IPA or its precursors - indole, tryptophan, and propionate - at 1, 10, 100, 250, or 500 μM to assess cell viability, integrity, differentiation, and proliferation. RESULTS: IPA induced cell proliferation and this effect was associated with a higher expression of extracellular signal-regulated kinase 2 (ERK2) and a lower expression of c-Jun. Although indole and propionate also induced cell proliferation, this involved ERK2 and c-Jun independent mechanisms. On the other hand, both tryptophan and propionate increased cell integrity and reduced the expression of claudin-1, whereas propionate decreased cell differentiation. CONCLUSIONS: In conclusion, these findings suggested that IPA and its precursors distinctly contribute to the proliferation, differentiation, and barrier function properties of human intestinal epithelial cells. Moreover, the pro-proliferative effect of IPA in intestinal epithelial cells was not explained by its precursors and is rather related to its whole chemical structure. Maintaining IPA at physiological levels, e.g., through IPA-producing commensal bacteria, may be important to preserve the integrity of the intestinal barrier and play an integral role in maintaining metabolic homeostasis.

Expression of Some Adhesion Molecules on the Cultured Endothelial Cells of Human Umbilical Vein Infected with Hantaan Virus (한탄바이러스 감염 내피세포에서 부착분자의 발현 (II) -In Situ Hybridization-)

  • Chung, Sang-In;Shin, Sung-Il;Kim, Ki-Jeong;Kang, Eung-Taek;Yu, Suk-Hee;Choi, Chul-Soon;Yang, Yong-Tae
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.1
    • /
    • pp.47-58
    • /
    • 1996
  • Histopathological vascular changes in hemorrhagic fever with renal syndrome (HFRS) caused by Hantaan virus include increased vascular permeability, disseminated intravascular coagulation, thrombocytopenia and changes in coagulation activity. Although vascular endothelial cells of main target organs such as kidney infected with Hantaan virus are not damaged but swelling of endothelial cells, perivascular exudates and infiltration of mononuclear cells and fresh interstitial hemorrhages are common. However, the pathogenesis of cell infiltration and hemorrhages around vascular endothelial cells are not well understood. Some endothelial cell molecules or vascular adhesins that acts as adhesion moleulces for leukocyte are expressed on endothelial cells close to site of inflammation. However, whether the expression of endothelial adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule (ICAM-1) and endothelial leukocyte adhesion molecule (ELAM) on vascular endothelial cells are increased by infection with Hantaan virus has not been studied. In this study, the relationship between the expression of VCAM-1, ICAM-1 and ELAM and adhesion of mononuclear cells on endothelial cells of human blood vessels infected with Hantaan virus was investigated. The endothelial cells of umbilical vein was passaged three times in culture medium and the monolayered cells were infected with $10^5\;pfu/ml$ of Hantaan virus grown in Vera E6 cell cultures. The multiplication of virus in cultured endothelial cells was monitored by immunohistochemistry and the expression of adhesion molecules was demonstrated by immunohistochemistry using monoclonal antibodies against VCAM-1, ICAM-1 and ELAM. And in situ hybriditation against ICAM-1 was also performed. The endothelial adhesion molecules, VCAM and ICAM, were expressed after 6 hours postinfection, respectively, and their expressions lasted for 72 hours. Similar expression of VCAM and ICAM appeared on endothelial cells by infection with virus, but the expression of ELAM was not recognized up to 72 hours postinfection. Microscopically, it was noted that many monocuclear cells adhered on endothelial cells infected with viruses. In an electronmicroscopic study, the transendothelial migration of mononuclear cells was observed on monolayered endothelial cells infected with virus. This results suggested that the endothelial adhesion molecules, particulary VCAM and ICAM, might be expressed on endothelial cells by infection with Hantaan virus and these molecules play a key role in the adhesion and extravasation of inflammatory cells around blood vessels.

  • PDF

Effects of Curcuma longa L.on Human Stomach Cancer Cells (울금(鬱金)이 위암세포(胃癌細胞)에 미치는 영향(影響))

  • Cho, Yu-Kyung;Yoon, Song-Ryub;Kim, Beong-Woo;Kim, Jin-Sung;Ryu, Ki-Won;Ryu, Bong-Ha
    • THE JOURNAL OF KOREAN ORIENTAL ONCOLOGY
    • /
    • v.9 no.1
    • /
    • pp.15-37
    • /
    • 2003
  • Objective: We are aimed to identify anti-tumor effects of Curcuma longa L. on the stomach cancer cells through molecular biologic methods. Material & Methods: We used AGS as human stomach cancer cells obtained from American Type Culture Collection. The boiled extract of Curcuma longa L. $5{\mu}l$ (Sample I), $10{\mu}l$ (Sample II) was treated to cultural media(ml) for 0, 6, 12, 24, 48 hours. We measured the killing effect on stomach cancer cells through Trypan blue exclusion test and the suppressive effect on viability of stomach cancer cells via MTT assay. For identification of its anticancer mechanism, the revelation of Bcl-2, Bcl-XL, and Bax which are genes related to apoptosis using the quantitative RT-PCR, change of mitochondria membrane permeability and membrane potential via flow cytometry, the cycle of cell mitosis, caspase cleavage and annexin V staining were examined. Results: 1. showed significant killing effect on stomach cancer cell than the control group with a time(6 hours later) and density dependent manner, which was statistical significance. 2. Extract of Curcuma longa L. showed suppressive effect on viability of stomach cancer cells that each test groups had more suppressive effects on viability of stomach cancer cells than the control group with a time(6 hours later), which was statistical significance.(p<0.05) 3. In the test about the revelation of genes related to apoptosis, the revelation of Bcl-2 and Bcl-XL decreased with a density manner which was statistical significance. but the revelation of Bax was not changed with statistical significance. 4. Extract of Curcuma longa L. caused apoptosis by decreasing the absorbance of mitochondria with statistical significance, and also induced apoptosis by decreasing the membrane potential of mitochondria. 5. Extract of Curcuma longa L. destructed the cell cycle of cell mitosos. 6. Cell apoptosis was induced by extract of Curcuma longa L. certificated by method of caspase cleavage and annexin V staining. Conclusion: This experiment showed that Curcuma longa L. has anti-tumor effect with statistical significance. This is in vitro experiment and basic experiment on Curcuma longa L.. We hope more progressive research on Curcuma longa L. will go on and its anti-tumor effects will be more practically identified.

  • PDF

Bacillus subtilis Protects Porcine Intestinal Barrier from Deoxynivalenol via Improved Zonula Occludens-1 Expression

  • Gu, Min Jeong;Song, Sun Kwang;Park, Sung Moo;Lee, In Kyu;Yun, Cheol-Heui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.580-586
    • /
    • 2014
  • Intestinal epithelial cells (IECs) forming the barrier for the first-line of protection are interconnected by tight junction (TJ) proteins. TJ alteration results in impaired barrier function, which causes potentially excessive inflammation leading to intestinal disorders. It has been suggested that toll-like receptor (TLR) 2 ligands and some bacteria enhance epithelial barrier function in humans and mice. However, no such study has yet to be claimed in swine. The aim of the present study was to examine whether Bacillus subtilis could improve barrier integrity and protection against deoxynivalenol (DON)-induced barrier disruption in porcine intestinal epithelial cell line (IPEC-J2). We found that B. subtilis decreased permeability of TJ and improved the expression of zonula occludens (ZO)-1 and occludin during the process of forming TJ. In addition, ZO-1 expression of IPEC-J2 cells treated with B. subtilis was up-regulated against DON-induced damage. In conclusion, B. subtilis may have potential to enhance epithelial barrier function and to prevent the cells from DON-induced barrier dysfunction.

New-Onset Malignant Pleural Effusion after Abscess Formation of a Subcarinal Lymph Node Associated with Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration

  • Jang, Sun Mi;Kim, Min Ji;Cho, Jeong Su;Lee, Geewon;Kim, Ahrong;Kim, Jeong Mi;Park, Chul Hong;Park, Jong Man;Song, Byeong Gu;Eom, Jung Seop
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.4
    • /
    • pp.188-192
    • /
    • 2014
  • We present a case of an unusual infectious complication of a ruptured mediastinal abscess after endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA), which led to malignant pleural effusion in a patient with stage IIIA non-small-cell lung cancer. EBUS-TBNA was performed in a 48-year-old previously healthy male, and a mediastinal abscess developed at 4 days post-procedure. Video-assisted thoracoscopic surgery was performed for debridement and drainage, and the intraoperative findings revealed a large volume pleural effusion that was not detected on the initial radiographic evaluation. Malignant cells were unexpectedly detected in the aspirated pleural fluid, which was possibly due to increased pleural permeability and transport of malignant cells originating in a ruptured subcarinal lymph node from the mediastinum to the pleural space. Hence, the patient was confirmed to have squamous cell lung carcinoma with malignant pleural effusion and his TNM staging was changed from stage IIIA to IV.