• 제목/요약/키워드: cell monitoring

Search Result 724, Processing Time 0.025 seconds

A Study on the Risk Prediction System Using System Support Load Monitoring Sensor (시스템 서포트 하중 모니터링 센서를 이용한 위험 예측시스템 연구)

  • Shim, Hak-Bo;Seok, Won-Kyun;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.186-187
    • /
    • 2020
  • Damage to temporary facilities and structural members caused by excessive loads in the field continue to occur. If the load can be monitored in advance, the risk can be prevented. In this study, a load cell sensor is installed under the system support, and load data is wirelessly transmitted through a Bluetooth AP(wireless). Risk prediction system is proposed through an construction alarm when an abnormal load occurs through real-time multi-point monitoring by sensor location.

  • PDF

Microfluidic Components and Bio-reactors for Miniaturized Bio-chip Applications

  • Euisik Yoon;Yun, Kwang-Seok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.86-92
    • /
    • 2004
  • In this paper miniaturized disposable micro/nanofluidic components applicable to bio chip, chemical analyzer and biomedical monitoring system, such as blood analysis, micro dosing system and cell experiment, etc are reported. This system includes various microfluidic components including a micropump, micromixer, DNA purification chip and single-cell assay chip. For low voltage and low power operation, a surface tension-driven micropump is presented, as well as a micromixer, which was implemented using MEMS technology, for efficient liquid mixing is also introduced. As bio-reactors, DNA purification and single-cell assay devices, for the extraction of pure DNA from liquid mixture or blood and for cellular engineering or high-throughput screening, respectively, are presented.

Application of Single Cell Gel Electrophoresis for Detection of DNA Single Strand Breaks in DNA of Fish Blood Cell (어류혈구세포에 있어서 Single Cell Gel Electrophoresis를 응용한 DNA Single Strand Breack의 측정)

  • KIM Gi Beum;LEE Richard F.;MARUYA Keith A.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.4
    • /
    • pp.346-351
    • /
    • 2003
  • Single-cell gel electrophoresis (comet assay) was used to detect DNA single strand break in blood cells from several marine fish species. Three fish species were collected from Georgia coastal area. Mummichog, Fundulus heteroclitus showed higher DNA damage than sea bass, Lateolabrax japonicus and trout, Oncorhynchus masou masou under the same experimental conditions. Mummichogs had more alkaline-labile sites on their DNA than other fish species. The comet assay with mummichog blood cells at pH 12.5 showed a dose-response curve with the increasing concentrations of hydrogen peroxide. While the isolated leucocytes showed no increase of DNA damage after in vitro exposure to 2-methyl-1,4-naphthoquinone (MNQ), erythrocytes showed dose-dependent DNA damage. These results indicate that the comet assay can be applied successfully as a bioassay using erythrocyte for environmental monitoring.

The Operating Characteristics in the Seasons of Photovoltaic System in Naju (나주지역 계절별 태양광발전 시스템 운전특성)

  • Jung, Sung-Chan;Shin, Young-Shik;Cha, In-Su;Choi, Jeong-Sik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.209-213
    • /
    • 2009
  • This article interprets the operating characteristics of the photovoltaic system during the winter and spring seasons, and based on the theoretical knowledge, analyzes the operational characteristics and the power electricity during the tentative application and operation of this system. Through the long-term measurement of the sunshine time and collection of the data related to this, we examine the study of graphic presentation and monitoring systems.

  • PDF

Non-invasive Methods for Determination of Cellular Growth in Podophyllum hexandrum Suspension Cultures

  • Chattopadhyay, Saurabh;Bisaria, V.S.;Scheper, T.;Srivastava, A.K.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.331-334
    • /
    • 2002
  • Culture conductivity and on-line NADH fluorescence were used to measure cellular growth in plant cell suspension cultures of Podophyllum hexandrum. An inverse correlation between dry cell weight and medium conductivity was observed during shake flask cultivation. A linear relationship between dry cell weight and culture NADH fluorescence was obtained during the exponential phase of batch cultivation In a bioreactor under the pH stat (pH 6) conditions. It was observed that conductivity measurement were suitable for biomass characterisation under highly dynamic uncontrolled shake flask cultivation conditions. However, if the acid/alkali feeding is done for pH control the conductivity measurement could not be applied. On the other hand the NADH fluorescence measurement allowed online-in situ biomass monitoring of rather heterogenous plant cell suspension cultures in bioreactor even under the most desirable pH stat conditions.

Application and Prospects of Molecular Imaging (분자영상의 적용분야 및 전망)

  • Choi, Guyrack;Lee, Sangbock
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.3
    • /
    • pp.123-136
    • /
    • 2014
  • In this paper, we study to classify molecular imaging and applications to predict future. Molecular imaging in vivo at the cellular level and the molecular level changes taking place to be imaged, that is molecular cell biology and imaging technology combined with the development of the new field. Molecular imaging is used fluorescence, bioluminescence, SPECT, PET, MRI, Ultrasound and other imaging technologies. That is applied to monitoring of gene therapy, cell tracking and monitoring of cell therapy, antibody imaging, drug development, molecular interaction picture, the near-infrared fluorescence imaging of cancer using fluorescence, bacteria using tumor-targeting imaging, therapeutic early assessment, prediction and therapy. The future of molecular imaging would be developed through fused interdisciplinary research and mutual cooperation, which molecular cell biology, genetics, chemistry, physics, computer science, biomedical engineering, nuclear medicine, radiology, clinical medicine, etc. The advent of molecular imaging will be possible to early diagnosis and personalized treatment of disease in the future.

A Cell-Based Assay System for Monitoring NF-$\kappa$B Activity in Human Epidermal Keratinocytes: A Screening Tool of the Antioxidants and Anti-inflammatories for Dermatological Purpose

  • Moon, Ki-Young;Hahn, Bum-Soo;Lee, Jinseon;Kim, Yeong-Shik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-27
    • /
    • 2001
  • A cell-based assay system for monitoring NF-$textsc{k}$B activity was developed to determine the influence of activated NF-$textsc{k}$B in human HaCaT cells. The pNF-$textsc{k}$B-SEAP-NPT plasmid that permits expression of the secreted alkaline phosphatase (SEAP) reported gene in response to the NF-$textsc{k}$B activity and contains neomycin phosphotransferase (NPT) gene for the geneticin resistance in host cells was constructed and transfected into human keratinocyte cell line HaCaT. Human HaCaT transfectant cells secreted the SEAP enzyme into the culture medium in a time-dependent manner until 72h. NF-$textsc{k}$B activities were measured in the SEAP reporter gene assay using a fluorescent detection method. The treatment of HaCaT cell transfectants with known antioxidants [e.g., N-acetyl-L-cysteine and vitamin C] showed inhibition of NF-$textsc{k}$B activity in a time-and concentration-dependent manner. The phorbol 12-myristate 13-acetate (PMA) known as a stimulator of NF-$textsc{k}$B expression demonstrated that it increased NF-$textsc{k}$B activity in a time- and concentration-dependent manner. This assay system could be used to determine the quantitative measurement of NF-$textsc{k}$B activity in the human skin and allow the screening of anti-inflammatory agents from various synthetic chemicals and natural products for dermatological purpose. Abbrevitions used: NF-$textsc{k}$B, nuclear factor kappa B; I-$textsc{k}$B, Inhibitory kappa B; SEAP, secreted alkaline phosphatase; NPT, neomycin phosphotransferease; PCR, polymerase chain reaction: dNTP, deoxynucleoside triphosphates; DMEM, dulbecco’s modified eagle medium; FBS, fetal bovine serum; PBs, phosphate-buffered saline; MUP, 4-methylumbellifery phosphate; NAC, N-acetyl-L-cysteine; DMSO, dimethyl sulfoxide; PMA, phorbol 12-myristate 13-acetate.

  • PDF

Spatio-temporal Characteristics of Cyanobacterial Communities in the Middle-downstream of Nakdong River and Lake Dukdong (낙동강 중, 하류 및 덕동호의 시·공간적 남조류 군집 특성)

  • Park, Hae-Kyung;Shin, Ra-Young;Lee, Haejin;Lee, Kyung-Lak;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.286-294
    • /
    • 2015
  • Temporal and spatial characteristics of cyanobacterial communities at the monitoring stations for Harmful Algal Bloom Alert System (HABAS) in Nakdong River and Lake Dukdong were investigated for two years (2013 to 2014). A total of 30 cyanobacterial species from 14 genera were found at the survey stations. Microcystis sp. showed maximum cell density in the total cyanobacterial community in August, 2014 at ND-2 and in September, 2013 at ND-3 station. Lynbya limnetica and Geitlerinema sp., non-target species for alert criteria showed maximum cell density at ND-1 (August, 2013) and Dam station of Lake Dukdong (September, 2014), respectively. Total cyanobacterial cell density and the relative abundance of four target genera (Microcystis, Anabaena, Aphanizomenon and Oscillatoria spp.) for alert criteria was relatively lower in the mesotrophic Lake Dukdong than at the eutrophic riverine stations of Nakdong River, indicating cyanobacterial density and the RA of target genera is affected by the trophic state of the monitoring stations. Simulating the alert system using phycocyanin concentration as an alert criterion resulted in the longer period of alert issued compared to the period of alert issued using the current criterion of harmful cyanobacterial cell density due to the influence of phycocyanin concentration from non-target cyanobacterial species.

Using Spatial Data and Land Surface Modeling to Monitor Evapotranspiration across Geographic Areas in South Korea (공간자료와 지면모형을 이용한 면적증발산 추정)

  • Yun J. I.;Nam J. C.;Hong S. Y.;Kim J.;Kim K. S.;Chung U.;Chae N. Y.;Choi T. J
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.149-163
    • /
    • 2004
  • Evapotranspiration (ET) is a critical component of the hydrologic cycle which influences economic activities as well as the natural ecosystem. While there have been numerous studies on ET estimation for homogeneous areas using point measurements of meteorological variables, monitoring of spatial ET has not been possible at landscape - or watershed - scales. We propose a site-specific application of the land surface model, which is enabled by spatially interpolated input data at the desired resolution. Gyunggi Province of South Korea was divided into a regular grid of 10 million cells with 30m spacing and hourly temperature, humidity, wind, precipitation and solar irradiance were estimated for each grid cell by spatial interpolation of synoptic weather data. Topoclimatology models were used to accommodate effects of topography in a spatial interpolation procedure, including cold air drainage on nocturnal temperature and solar irradiance on daytime temperature. Satellite remote sensing data were used to classify the vegetation type of each grid cell, and corresponding spatial attributes including soil texture, canopy structure, and phenological features were identified. All data were fed into a standalone version of SiB2(Simple Biosphere Model 2) to simulate latent heat flux at each grid cell. A computer program was written for data management in the cell - based SiB2 operation such as extracting input data for SiB2 from grid matrices and recombining the output data back to the grid format. ET estimates at selected grid cells were validated against the actual measurement of latent heat fluxes by eddy covariance measurement. We applied this system to obtain the spatial ET of the study area on a continuous basis for the 2001-2003 period. The results showed a strong feasibility of using spatial - data driven land surface models for operational monitoring of regional ET.

Molecular Mechanism of Plant Growth Promotion and Induced Systemic Resistance to Tobacco Mosaic Virus by Bacillus spp.

  • Wang, Shuai;Wu, Huijun;Qiao, Junqing;Ma, Lingli;Liu, Jun;Xia, Yanfei;Gao, Xuewen
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1250-1258
    • /
    • 2009
  • Bacillus spp., as a type of plant growth-promoting rhizobacteria (PGPR), were studied with regards promoting plant growth and inducing plant systemic resistance. The results of greenhouse experiments with tobacco plants demonstrated that treatment with the Bacillus spp. significantly enhanced the plant height and fresh weight, while clearly lowering the disease severity rating of the tobacco mosaic virus (TMV) at 28 days post-inoculation (dpi). The TMV accumulation in the young non-inoculated leaves was remarkably lower for all the plants treated with the Bacillus spp. An RT-PCR analysis of the signaling regulatory genes Coil and NPR1, and defense genes PR-1a and PR-1b, in the tobacco treated with the Bacillus spp. revealed an association with enhancing the systemic resistance of tobacco to TMV. A further analysis of two expansin genes that regulate plant cell growth, NtEXP2 and NtEXP6, also verified a concomitant growth promotion in the roots and leaves of the tobacco responding to the Bacillus spp.