• Title/Summary/Keyword: cell model

Search Result 5,286, Processing Time 0.03 seconds

Dendritic Cell Based Cancer Immunotherapy: in vivo Study with Mouse Renal Cell Carcinoma Model (수지상세포를 이용한 항암 면역 치료: 생쥐 신장암 모델을 이용한 연구)

  • Lee, Hyunah;Choi, Kwang-Min;Baek, Soyoung;Lee, Hong-Ghi;Jung, Chul-Won
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.44-52
    • /
    • 2004
  • Background: As a potent antigen presenting cell and a powerful inducer of antigen specific immunity, dendritic cells (DCs) are being considered as a promising anti-tumor therapeutic module. The expected therapeutic effect of DCs in renal cell carcinoma was tested in the mouse model. Established late-stage tumor therapeutic (E-T) and minimal residual disease (MRD) model was considered in the in vivo experiments. Methods: Syngeneic renal cell carcinoma cells (RENCA) were inoculated either subcutaneously (E-T) or intravenously (MRD) into the Balb/c mouse. Tumor cell lysate pulsed-DCs were injected twice in two weeks. Intraperitoneal DC injection was started 3 week (E-T model) or one day (MRD model) after tumor cell inoculation. Two weeks after the final DC injection, the tumor growth and the systemic immunity were observed. Therapeutic DCs were cultured from the bone marrow myeloid lineage cells with GM-CSF and IL-4 for 7 days and pulsed with RENCA cell lysate for 18 hrs. Results: Compared to the saline treated group, tumor growth (E-T model) or formation (MRD model) was suppressed in pulsed-DC treated group. RENCA specific lymphocyte proliferation was observed in the RENCA tumor-bearing mice treated with pulsed-DCs. Primary cytotoxic T cell activity against RENCA cells was increased in pulsed-DC treated group. Conclusion: The data suggest the possible anti-tumor effect of cultured DCs in established or minimal residual disease/metastasis state of renal cell carcinoma. Systemic tumor specific immunity including cytotoxic T cell activity was modulated also in pulsed-DC treated group.

A Queueing Model for Mobile Communication Systems with Hierarchical Cell Structure (계층적 셀 구조를 갖는 이동 통신 시스템의 큐잉 모델)

  • 김기완
    • Journal of the Korea Society for Simulation
    • /
    • v.7 no.2
    • /
    • pp.63-78
    • /
    • 1998
  • The hierarchical cell structure consists of the macrocell and microcells to increase the system capacity and to achieve broad coverage. The hierarchical cell structure provides services for users in different mobility. In this paper, an analytical queueing model in mobile networks is proposed for the performance evaluation of the hierarchical cell structure. The model for networks with the multiple levels can simplify multi-dimensional ones into one-dimensional queueing model. The computational advantage will be growing as the layers are constructed in multiple levels. The computer simulation is provided for validating the proposed analytical model.

  • PDF

An integrated model of cell formation and cell layout for minimizing exceptional elements and intercell moving distance (예외적 요소와 셀간 이동거리를 최소화할 수 있는 셀 형성과 셀 배치결정 모형)

  • 윤창원;정병희
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.121-124
    • /
    • 1996
  • In general, cellular manufacturing system can be constructed by the following two steps. The first step forms machine cells and part families, and the second step determines cell layout based on the result of first step. Cell layout has to be considered when cell is formed becauese the result of cell formation affects it. This paper presents a cell formation algorithm and proposes an integrated mathematical model for cell formation and cell layout. The cell formation algorithm minimizes the number of exceptional element in cellular manufacturing system. New concept for similarity and incapability is introduced, based on machine-operation incidence matrix and part-operation incidence matrix. One is similarity between the machines, the other is similarity between preliminary machine cells and machines. The incapability identifies relations between machine cells and parts. In this procedure, only parts without an exceptional element are assigned to machine cell. Bottleneck parts are considered with cell layout design in an integrated mathematical model. The integrated mathematical model determines cell layout and assigns bottleneck parts to minimize the number of exceptional element and intercell moving distance, based on linearixed 0-1 integer programming. The proposed algorithm is illustrated by using numerical examples.

  • PDF

A Structured Growth Model of Scutellaria baicalensis G. Plant Cell (Scutellaria baicalensis G. 식물 세포의 구조적 성장 모델)

  • 최정우;조진만;이정건;이원홍;김익환;박영훈
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.251-258
    • /
    • 1998
  • A structured kinetic model is proposed to describe cell growth and secondary metabolite, flavone glycosides, synthesis in batch suspension culture of Scutellaria baicalensis G. The model has been developed by representing the physiological state of cell described as the activity and viability which can be estimated based on the culture fluorescence. In the model, three type of cells are considered; active-viable, nonactive-viable and dead cells. Viable cell weight could be determined based on the relative fluorescence intensity. The flavone glycosides could be produced by both active-viable and non-active viable cells with a different production rate. And the model includes the cell expansion due to glucose concentration and death phase which accounts for the release of intracellular secondary metabolite into medium. Dependent variables include substrate concentration(glucose), cell mass(dry cell weight and fresh cell weight), product concentration(flavone glycosides), activity and viability. Satisfactory agreement between the model and experimental data is obtained from shake flask culture of Scutellaria baicalensis G. The proposed model can predict the cell growth and flavone glycosides synthesis as well as intermediate materials.

  • PDF

Modeling and Analysis of the Air Supply System for Vehicular PEM Fuel Cell (PEM 연료전지 자동차의 급기 시스템의 모델링 및 분석)

  • Jang, Hyuntak;Kang, Esak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.3
    • /
    • pp.236-246
    • /
    • 2003
  • This paper focuses on developing a model of a PEM fuel cell stack and to integrate it with realistic model of the air supply system for fuel cell vehicle application. The fuel cell system model is realistically and accurately simulated air supply operation and its effect on the system power and efficiency using simulation tool Matlab/Simulink. The Peak performance found at a pressure ratio of 3, and it give a 15mV increase per cell. The limit imposed is a minimum SR(Stoichiometric Ratio) of 2 at low fuel cell load and 2.5 at high fuel cell load.

Optimal Design of Battery of Fuel Cell Electric Vehicle Based on Fuel Cell Dynamic Characteristic Model (연료전지 과도 특성 모델링 기반 FCEV용 배터리 용량 최적 설계)

  • Ko, Jeong-Min;Kim, Jong-Soo;Lee, Young-Kuk;Lee, Byung-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1714-1719
    • /
    • 2009
  • In this paper, methodology of battery optimal designing is proposed. Fuel cell model including dynamic characteristic is developed and load model is produced by considering driving schedule. Using these models, required energy of load and supplying energy from fuel cell are analyzed by comparing simulation results. Also parameter of fuel cell model is changed variously and battery capacity is calculated in each cases. And methode of battery optimal designing is presented by regarding dynamic characteristic of fuel cell.

A study on Hair Bundle Feature Estimation Based on Negative Stiffness Mechanism Using Integrated Vestibular Hair Cell Model (전정 유모세포 통합 모델을 이용한 반강성 기전 기반 섬모번들 특성 추정에 관한 연구)

  • Kim, Dongyoung;Hong, Kihwan;Kim, Kyu-Sung;Lee, Sangmin
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.218-225
    • /
    • 2013
  • In this paper hair bundle feature model and integration method for hair cell models were proposed. The proposed hair bundle feature model was based on spring-damper-mass model. Input of integrated vestibular hair cell model was frequency and output was interspike interval of hair cell that was reflected the feature of hair bundles. Irregular afferents that had a great gain variation showed reduction of negative stiffness section. Regular afferents that had a small gain variation, however, showed same feature with base negative stiffness feature. As a result, integrated vestibular hair cell model showed almost the same modeling data with experimental data in the modeled eleven frequency bands. It is verified that the proposed model is a good model for hair bundle feature modeling.

Electric-Thermal Photovoltaic Model Validation Using Real-Time Simulations (Real-Time 시뮬레이션을 이용한 전기-열 PV 모델링 입증)

  • Mai, Xuan Hung;Kim, Katherine A.
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.357-358
    • /
    • 2016
  • This paper presents a dynamic, electric-thermal model for a photovoltaic (PV) cell that combines electrical and thermal parameters. In this model, the irradiance and ambient temperature are used to calculate the PV cell temperature based on a five-layer thermal model. The cell temperature is then used in the electrical model to accurately adjust the PV cell output electrical characteristics and power. A custom experimental setup was built to test and verify the electrical and thermal characteristics of the PV cell and its surrounding layers. The electric-thermal model is validated using experimental data in realistic scenarios. This PV model can be scaled up and used to simulate PV systems in wide variety of applications, extreme environmental conditions, and fault conditions in real-time.

  • PDF

Rigorous Model for Spherical Cell-support Aggregate

  • Moon, Seung-Hyeon;Lee, Ki-Beom;Satish J. Paruekar
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.42-50
    • /
    • 2001
  • The activity of immobilized cell-support particle aggregates is influenced by physical and biochemical elements, mass transfer, and physiology. Accordingly, the mathematical model discussed in this study is capable of predicting the steady state and transient concentration profiles of the cell mass and substrate, plus the effects of the substrate and product inhibition in an immobilized cell-support aggregate. The overall mathematical model is comprised of material balance equations for the cell mass, major carbon source, dissolved oxygen, and non-biomass products in a bulk suspension along with a single particle model. A smaller bead size and higher substrate concentration at the surface of the particle, resulted in a higher supply of the substrate into the aggregate and consequently a higher biocatalyst activity.

  • PDF

GIS Application Model for Spatial Simulation of Surface Runoff from a Small Watershed(I) (소유역 지표유출의 공간적 해석을 위한 지리정보시스템의 응용모형(I) -격자 물수지 모형의 개발 및 적용-)

  • 김대식;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.23-33
    • /
    • 1995
  • Geographic data which are difficult to handle by the characteristics of spatial variation and variety turned into a possibility to analyze with tlie computer-aided digital map and the use of Geographic Information System(GIS). The purpose of this study is to develop and apply a GIS application model (GISCELWAB) for the spatial simulation of surface runoff from a small watershed. This paper discribes the modeling procedure and the applicability of the cell water balance model (CELWAB) which calculates the water balance of a cell and simulates surface runoff of watershed simultaneously by the interaction of cells. The cell water balance model was developed to simulate the temporal and spatial storage depth and surface runoff of a watershed. The CELWAB model was constituted by Inflow-Outflow Calculator (JOC) which was developed to connect cell-to-cell transport mechanism automatically in this study. The CELWAB model requests detail data for each component of a cell hydrologic process. In this study, therefore, BANWOL watershed which have available field data was selected, and sensitivity for several model parameters was analyzed. The simulated results of surface runoff agreed well with the observed data for the rising phase of hydrograph except the recession phase. Each mean of relative errors for peak discharge and peak time was 0.21% and2.1 1% respectively. In sensitivity analysis of CELWAB , antecedent soil moisture condition(AMC) affected most largely the model.

  • PDF