• 제목/요약/키워드: cell injury and death

검색결과 228건 처리시간 0.031초

Functional Gene Analysis for the Protection of Male Germ Cell Injury Induced by Busulfan Treatment using cDNA Microarray Analysis

  • 최윤정;옥도원;황규찬;김진회
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.21-21
    • /
    • 2003
  • Male germ cell apoptosis has been extensively explored in rodent. In contrast, very little is known about their susceptibility to apoptosis stimuli of developing germ cell stages at the time when germ cell depletion after busulfan treatment occurs. Furthermore, it is still unanswered how spermatogonial stem cells are resistant to busulfan treatment. We examined the change of gene expression in detail using cDNA microarray analysis of mouse testis treated with busulfan. A subtoxic dose of busulfan (40mg/kg of body weight) transiently increased 228 mRNA levels among of the 8000 genes analyzed. TagMan analysis confirmed that the mRNA levels such as defensive protein, support protein, enzymatic protein, transport protein, and hormonal protein were rapidly increased. These results were re-confirmed by real-time PCR analysis. However, the expression levels of these genes induced by busulfan treatment were significantly reduced in control testis, indicating that both of male germ cells and somatic cells after busulfan treatment induces self-defense mechanism for protection of testicular cell death. Among them, we conclude that defense proteins play a key role in testis injury induced by busulfan.

  • PDF

Tat-Thioredoxin-like protein 1 attenuates ischemic brain injury by regulation of MAPKs and apoptosis signaling

  • Hyun Ju Cha;Won Sik Eum;Gi Soo Youn;Jung Hwan Park;Hyeon Ji Yeo;Eun Ji Yeo;Hyun Jung Kwon;Lee Re Lee;Na Yeon Kim;Su Yeon Kwon;Yong-Jun Cho;Sung-Woo Cho;Oh-Shin Kwon;Eun Jeong Sohn;Dae Won Kim;Duk-Soo Kim;Yu Ran Lee;Min Jea Shin;Soo Young Choi
    • BMB Reports
    • /
    • 제56권4호
    • /
    • pp.234-239
    • /
    • 2023
  • Thioredoxin-like protein 1 (TXNL1), one of the thioredoxin superfamily known as redox-regulator, plays an essential in maintaining cell survival via various antioxidant and anti-apoptotic mechanisms. It is well known that relationship between ischemia and oxidative stress, however, the role of TXNL1 protein in ischemic damage has not been fully investigated. In the present study, we aimed to determine the protective role of TXNL1 against on ischemic injury in vitro and in vivo using cell permeable Tat-TXNL1 fusion protein. Transduced Tat-TXNL1 inhibited ROS production and cell death in H2O2-exposed hippocampal neuronal (HT-22) cells and modulated MAPKs and Akt activation, and pro-apoptotic protein expression levels in the cells. In an ischemia animal model, Tat-TXNL1 markedly decreased hippocampal neuronal cell death and the activation of astrocytes and microglia. These findings indicate that cell permeable Tat-TXNL1 protects against oxidative stress in vitro and in vivo ischemic animal model. Therefore, we suggest Tat-TXNL1 can be a potential therapeutic protein for ischemic injury.

혈관내피세포의 산화적 손상에 대한 지황음자의 방어기전 연구 (Protective Effects of Jihwangeumja on Oxidative Stress-induced Injury of Human Umbilical Vein Endothelial Cells)

  • 정용준;장재호;이대용;이민구;전인철;정대영;이인;신선호;문병순
    • 대한한의학회지
    • /
    • 제25권2호
    • /
    • pp.173-183
    • /
    • 2004
  • Objectives : Oxidative stress can induce negative responses such as growth inhibition or cell death by necrosis or apoptosis due to the intensity of the oxidative stress, as well as positive responses such as cellular proliferation or activation. We examined the effect of Jihwangeumja on this process. Methods and Results : We analyzed the influence of oxidative stress and agents that modify its effect in human umbilical vein endothelial cell (HUVEC). Oxidative stress was induced by $B_2O_2$. With induced oxidative stress the results obtained indicate that it has a harmful effect over cell function and viability, and that this effect is dose and time dependent. When oxidative stress increased, Jihwangeumja reduced cell damage and had protective functions. $B_2O_2$, induced the apoptosis of HUVEC through the activation of intrinsic caspases pathway as well as mitochondrial dysfunction. A significant increase in cell survival was observed in culture cells with oxidative stress when they were treated with Jihwangeumja. Conclusions : These results suggest that Jihwangeumja may be potentially useful to treat HUVEC against oxidative damages mediated by modulation of caspase protease and mitochondrial dysfunction.

  • PDF

Impairment of Mitochondrial ATP Synthesis Induces RIPK3-dependent Necroptosis in Lung Epithelial Cells During Lung Injury by Lung Inflammation

  • Su Hwan Lee;Ju Hye Shin;Min Woo Park;Junhyung Kim;Kyung Soo Chung;Sungwon Na;Ji-Hwan Ryu;Jin Hwa Lee;Moo Suk Park;Young Sam Kim;Jong-Seok Moon
    • IMMUNE NETWORK
    • /
    • 제22권2호
    • /
    • pp.18.1-18.15
    • /
    • 2022
  • Dysfunction of mitochondrial metabolism is implicated in cellular injury and cell death. While mitochondrial dysfunction is associated with lung injury by lung inflammation, the mechanism by which the impairment of mitochondrial ATP synthesis regulates necroptosis during acute lung injury (ALI) by lung inflammation is unclear. Here, we showed that the impairment of mitochondrial ATP synthesis induces receptor interacting serine/threonine kinase 3 (RIPK3)-dependent necroptosis during lung injury by lung inflammation. We found that the impairment of mitochondrial ATP synthesis by oligomycin, an inhibitor of ATP synthase, resulted in increased lung injury and RIPK3 levels in lung tissues during lung inflammation by LPS in mice. The elevated RIPK3 and RIPK3 phosphorylation levels by oligomycin resulted in high mixed lineage kinase domain-like (MLKL) phosphorylation, the terminal molecule in necroptotic cell death pathway, in lung epithelial cells during lung inflammation. Moreover, the levels of protein in bronchoalveolar lavage fluid (BALF) were increased by the activation of necroptosis via oligomycin during lung inflammation. Furthermore, the levels of ATP5A, a catalytic subunit of the mitochondrial ATP synthase complex for ATP synthesis, were reduced in lung epithelial cells of lung tissues from patients with acute respiratory distress syndrome (ARDS), the most severe form of ALI. The levels of RIPK3, RIPK3 phosphorylation and MLKL phosphorylation were elevated in lung epithelial cells in patients with ARDS. Our results suggest that the impairment of mitochondrial ATP synthesis induces RIPK3-dependent necroptosis in lung epithelial cells during lung injury by lung inflammation.

Promoting Effect of Hydrogen Peroxide on 1-Methyl-4-phenylpyridinium-induced Mitochondrial Dysfunction and Cell Death in PC12 Cells

  • Lee, Dong-Hee;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권1호
    • /
    • pp.51-58
    • /
    • 2006
  • The promoting effect of hydrogen peroxide ($H_2O_2$) against the cytotoxicity of 1-methyl-4-phenylpyridinium ($MPP^+$) in differentiated PC12 cells was assessed by measuring the effect on the mitochondrial membrane permeability. Treatment of PC12 cells with $MPP^+$ resulted in the nuclear damage, decrease in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species (ROS) and depletion of GSH. Addition of $H_2O_2$ enhanced the $MPP^+-induced$ nuclear damage and cell death. Catalase, Carboxy-PTIO, Mn-TBAP, N-acetylcysteine, cyclosporin A and trifluoperazine inhibited the cytotoxic effect of $MPP^+$ in the presence of $H_2O_2$. Addition of $H_2O_2$ promoted the change in the mitochondrial membrane permeability, ROS formation and decrease in GSH contents due to $MPP^+$ in PC12 cells. The results show that the $H_2O_2$ treatment promotes the cytotoxicity of $MPP^+$ against PC12 cells. $H_2O_2$ may enhance the $MPP^+$-induced viability loss in PC12 cells by promoting the mitochondrial membrane permeability change, release of cytochrome c and subsequent activation of caspase-3, which is associated with the increased formation of ROS and depletion of GSH. The findings suggest that $H_2O_2$ as a promoting agent for the formation of mitochondrial permeability transition may enhance the neuronal cell injury caused by neurotoxins.

인진청간탕가미방(茵蔯淸肝湯加味方)이 간세포(肝細胞)의 증식능력(增殖能力)에 미치는 영향(影響) (The Effect of Injinchunggantang-derivative on Proliferation of Hepatocyte)

  • 박용진;김영철;이장훈;우홍정
    • 대한한의학회지
    • /
    • 제19권1호
    • /
    • pp.145-164
    • /
    • 1998
  • The purpose of this study is to evaluate the effect of Injinchunggantang-derivative on proliferation of hepatocyte in rats. Cell viability is studied by MTI assay. The gene related to cell replication such as p53, waf1, bcl-2 and $bcl-_{X_L}$ is quantitized by quantitative RT-PCR and the proteins coded by these genes are studied by Western blotting. The results are as follows. 1. The hepatocytes cultured in medium with lnjinchunggantang-derivative showed better viability compared with control grroup in MTI assay, and the hepatocytes cultured in medium with the Injinchunggantang-derivative-and-ethanol-mixed group showed better viability than the hepatocytes cultrued in 10% ethanol culture medium(control group), noting that Injinchunggantang-derivative has protective effect on hepatocyte injury. There was no dose- and time-dependence. 2. In quantitative RT-PCR, i) Bel-2 gene increased significantly both in Injinchunggantang-derivative group and in Injinchunggantang-derivative-and-ethanol-mixed group, while it showed no significant increase or decrease in other group. ii) $Bcl-_{X_L}$ gene increased significantly in Injinchunggantang-derivative group as well as in Injinchunggantang-deri vative-and-ethanol -mixed group. iii) P53 gene showed no significant increase or decrease in hepatocytes cultured in medium with 10% ethanol and in hepatocytes cultured in medium with Injinchunggantang-derivative-and-ethanol-mixed group, suggesting that 10% ethanol induced cell toxicity, thus increased p53 gene expression. iv) Wafl gene showed no significant increase or decrease in hepatocytes cutured in medium with Injinchtrnggantang-derivative, while increased in hepatocytes cultured in medium with 10% ethanol and in hepatocytes cultured in medium with Injinchtrnggantang-derivative-andethanol-mixed group, suggesting that 10% ethanol induced cell toxicity increased wafl gene expression. 3. In the study on protein by western blotting, the band of bcl-2 and $bcl-_{X_L}$ were widened in Injinchtrnggantang-derivative group. Especially the amount of $bcl-_{X_L}$ increased significantly compared with other groups. But in the study on p53 and wafl, there was no significant difference among those groups. Above study shows that Injinchunggantang-derivative has good effect on cell viability and that the genes resistant to cell death such as bcl-2 and $bcl-_{X_L}$ are induced by Injinchunggantang-derivative to resist to cell death by toxic agent And this is reconfirmed in protein study using' western blotting: These results suggest that Injinchunggantang-derivative has inhibitory effect on cell death as well as protective effect on hepatocyte. Therefore this prescription is recommended in various liver diseases such as chronic liver disease and-induced hepatic injury.

  • PDF

Clinical characteristics and mortality risk factors among trauma patients by age groups at a single center in Korea over 7 years: a retrospective study

  • Jonghee Han;Su Young Yoon;Junepill Seok;Jin Young Lee;Jin Suk Lee;Jin Bong Ye;Younghoon Sul;Seheon Kim;Hong Rye Kim
    • Journal of Trauma and Injury
    • /
    • 제36권4호
    • /
    • pp.329-336
    • /
    • 2023
  • Purpose: In this study, we aimed to compare the characteristics of patients with trauma by age group in a single center in Korea to identify the clinical characteristics and analyze the risk factors affecting mortality. Methods: Patients aged ≥18 years who visited the Chungbuk National University Hospital Regional Trauma Center between January 2016 and December 2022 were included. The accident mechanism, severity of the injury, and outcomes were compared by classifying the patients into group A (18-64 years), group B (65-79 years), and group C (≥80 years). In addition, logistic regression analysis was performed to identify factors affecting death. Results: The most common injury mechanism was traffic accidents in group A (40.9%) and slipping in group B (37.0%) and group C (56.2%). Although group A had the highest intensive care unit admission rate (38.0%), group C had the highest mortality rate (9.5%). In the regression analysis, 3 to 8 points on the Glasgow Coma Scale had the highest odds ratio for mortality, and red blood cell transfusion within 24 hours, intensive care unit admission, age, and Injury Severity Score were the predictors of death. Conclusions: For patients with trauma, the mechanism, injured body region, and severity of injury differed among the age groups. The high mortality rate of elderly patients suggests the need for different treatment approaches for trauma patients according to age. Identifying factors affecting clinical patterns and mortality according to age groups can help improve the prognosis of trauma patients in the future.

단삼약침액(丹蔘藥鍼液)이 신장(腎臟) 근위세뇨관세포(近位細尿管細胞)에서 산화제(酸化劑)에 의한 인산(燐酸)의 이동억제(移動抑制)에 미치는 영향(影響) (The Effect of Salviae Radix on Oxidat-Inhibition of Phosphate Uptake in Renal Proximal Tubular Cells)

  • 이호동;윤현민;장경전;송춘호;안창범
    • Journal of Acupuncture Research
    • /
    • 제17권3호
    • /
    • pp.208-218
    • /
    • 2000
  • This study was undertaken to determine if Salviae Radix (SR) exerts protective effect against oxidant-induced inhibition of phosphate uptake in renal proximal tubular cells. Membrane transport function and cell death were evaluated by measuring phosphate uptake and trypan blue exclusion, respectively, in opossum kidney (OK) cells, an established proximal tubular cell line. $H_2O_2$ was used as a model oxidant. $H_2O_2$ inhibited the phosphate uptake in a dose-dependent manner over the concentration range of 0.1-0.5 mM. Similar fashion was observed in cell death. However, the phosphate uptake was more vulnerable to $H_2O_2$ than cell death, suggesting that $H_2O_2$-induced inhibition of phosphate uptake is not totally attributed to cell death. Decreasedphosphate uptake was associated with ATP depletion and inhibition of $Na^+$-pump activity as determined by direct inhibition of $N^+-K^+$-ATPase activity. When cells were treated with $H_2O_2$ in the presence of 0.05% SR, the inhibition of phosphate uptake and cell death induced by $H_2O_2$ was significantly attenuated. SR restored ATP depletion and decreased $Na^+-K^+$-ATPase activity, and this is likely responsible for the protective effect of SR on decreased phosphate uptake. The protective effect of SR was similar to the $H_2O_2$ scavenger catalase. SR reacts directly with $H_2O_2$ to reduce the effective concentration of the oxidant. The iron chelator deferoxamine prevented the inhibition of phosphate uptake and cell death induced by $H_2O_2$, suggesting that $H_2O_2$-induced cell injury is resulted from an iron-dependent mechanism. These results indicate that SR exerts the protective effect against $H_2O_2$-induced inhibition of phosphate uptake by reacting directly with $H_2O_2$ like the $H_2O_2$scavenger enzyme catalase, in OK cells. However, the underlying mechanism remains to be explored.

  • PDF

Synergistic Renoprotective Effect of Melatonin and Zileuton by Inhibition of Ferroptosis via the AKT/mTOR/NRF2 Signaling in Kidney Injury and Fibrosis

  • Kyung Hee Jung;Sang Eun Kim;Han Gyeol Go;Yun Ji Lee;Min Seok Park;Soyeon Ko;Beom Seok Han;Young-Chan Yoon;Ye Jin Cho;Pureunchowon Lee;Sang-Ho Lee;Kipyo Kim;Soon-Sun Hong
    • Biomolecules & Therapeutics
    • /
    • 제31권6호
    • /
    • pp.599-610
    • /
    • 2023
  • According to recent evidence, ferroptosis is a major cell death mechanism in the pathogenesis of kidney injury and fibrosis. Despite the renoprotective effects of classical ferroptosis inhibitors, therapeutic approaches targeting kidney ferroptosis remain limited. In this study, we assessed the renoprotective effects of melatonin and zileuton as a novel therapeutic strategy against ferroptosis-mediated kidney injury and fibrosis. First, we identified RSL3-induced ferroptosis in renal tubular epithelial HK-2 and HKC-8 cells. Lipid peroxidation and cell death induced by RSL3 were synergistically mitigated by the combination of melatonin and zileuton. Combination treatment significantly downregulated the expression of ferroptosis-associated proteins, 4-HNE and HO-1, and upregulated the expression of GPX4. The expression levels of p-AKT and p-mTOR also increased, in addition to that of NRF2 in renal tubular epithelial cells. When melatonin (20 mg/kg) and zileuton (20 mg/kg) were administered to a unilateral ureteral obstruction (UUO) mouse model, the combination significantly reduced tubular injury and fibrosis by decreasing the expression of profibrotic markers, such as α-SMA and fibronectin. More importantly, the combination ameliorated the increase in 4-HNE levels and decreased GPX4 expression in UUO mice. Overall, the combination of melatonin and zileuton was found to effectively ameliorate ferroptosis-related kidney injury by upregulating the AKT/mTOR/ NRF2 signaling pathway, suggesting a promising therapeutic strategy for protection against ferroptosis-mediated kidney injury and fibrosis.

죽력의 Nrf2 활성화를 통한 장상피세포 보호 효능 (Efficacy of Bambusae Caulis in Liquamen to protect intestinal epithelial cells via Nrf2 activation)

  • 김재민;양지혜
    • 대한한의학방제학회지
    • /
    • 제32권2호
    • /
    • pp.111-120
    • /
    • 2024
  • Objectives : Intestinal epithelial cell damage is closely associated with various intestinal diseases, such as Inflammatory Bowel Disease (IBD), Celiac Disease and Gastroenteritis, and it plays a crucial role in the development and progression of intestinal diseases. Therefore, it is important to develop drugs that target protection of intestinal epithelial cells. Here, we aimed to investigated whether Bambusae Caulis in Liquamen (BCL) against t-BHP induced oxidative stress injury in human intestinal epithelial cells and to explore the underlying molecular mechanism. Methods : In this study, we performed MTT assay, measurement of ROS generation, and immunoblot analysis to determine the cytoprotective efficacy in HT29 cells (human colorectal adenocarinoma cell line with epithelial morphogy). Results : First, we checked that BCL was not cytotoxic up to concentration 30 ㎍/mL in HT29 cells. Then, we confirmed that BCL inhibited t-BHP-induced ROS and cell death. BCL also reversed the expression of proteins associated apoptosis. Next, to confirm the relationship between efficacy of BCL and Nrf2, we conducted experiments using siNrf2. Asresult, the effects of inhibiting ROS production and cell death of BCL was reversed by siNrf2. Conclusion : BCL prevents t-BHP-induced oxidative stress and apoptosis. And the efficacy of BCL is related to Nrf2 activation.