• Title/Summary/Keyword: cell injury and death

Search Result 228, Processing Time 0.053 seconds

Antioxidative and Anti-inflammatory Effects of Aurantii Fructus Immaturus Pharmacopuncture (지각 약침액의 항산화 및 항염증 효과에 관한 연구)

  • Kim, Sung-Jin;Park, Sang-Kyun
    • Korean Journal of Acupuncture
    • /
    • v.27 no.2
    • /
    • pp.13-24
    • /
    • 2010
  • Objectives : Ulcerative colitis is a chronic relapsing inflammatory disease in the gastrointestinal tract. We investigated whether Aurantii fructus immaturus (AFI) pharmacopuncture has antioxidative and anti-inflammatory effects. Methods : in vitro experiments, 1,1-diphenyl-2-picryl hydrazyl (DPPH) free radical scavenging activity, superoxide dismutase (SOD) activity, prevention on $H_2O_2$-induced cell death in RAW264.7 cell line, DNA fragmentation, and cyclooxygenase-2 mRNA expression induced by lipopolysaccharide (LPS), were analyzed to investigate antioxidative and anti-inflammatory effect of AFI pharmacopuncture. in vivo experiment, a murine model of dextran sulfate sodium (DSS)-induced colitis was used to examine the effect of AFI pharmacopuncture on CV12 at different doses of 5 ${\mu}l$, 0.5 ${\mu}l$, 0.05 ${\mu}l$ for 10 days. Body weight, colon length and macroscopic features were investigated. Results : AFI pharmacopuncture showed DPPH free radical scavenging and SOD active effects in a dose-dependent manner. AFI pharmacopuncture showed a protective effect against $H_2O_2$-induced cell injury and also attenuated LPS-induced COX-2 mRNA expression. In a DSS- induced colitis murine model, however, AFI pharmacopuncture at CV12 had no anti-inflammatory effects. Conclusions : The present results suggest that AFI pharmacopuncture extract may have anti- inflammatory and antioxidative effects in vivo test, but further research on the underlying mechanism is required.

Lipocalin-2 Secreted by the Liver Regulates Neuronal Cell Function Through AKT-Dependent Signaling in Hepatic Encephalopathy Mouse Model

  • Danbi Jo;Yoon Seok Jung;Juhyun Song
    • Clinical Nutrition Research
    • /
    • v.12 no.2
    • /
    • pp.154-167
    • /
    • 2023
  • Hepatic encephalopathy (HE) associated with liver failure is accompanied by hyperammonemia, severe inflammation, depression, anxiety, and memory deficits as well as liver injury. Recent studies have focused on the liver-brain-inflammation axis to identify a therapeutic solution for patients with HE. Lipocalin-2 is an inflammation-related glycoprotein that is secreted by various organs and is involved in cellular mechanisms including iron homeostasis, glucose metabolism, cell death, neurite outgrowth, and neurogenesis. In this study, we investigated that the roles of lipocalin-2 both in the brain cortex of mice with HE and in Neuro-2a (N2A) cells. We detected elevated levels of lipocalin-2 both in the plasma and liver in a bile duct ligation mouse model of HE. We confirmed changes in cytokine expression, such as interleukin-1β, cyclooxygenase 2 expression, and iron metabolism related to gene expression through AKT-mediated signaling both in the brain cortex of mice with HE and N2A cells. Our data showed negative effects of hepatic lipocalin-2 on cell survival, iron homeostasis, and neurite outgrowth in N2A cells. Thus, we suggest that regulation of lipocalin-2 in the brain in HE may be a critical therapeutic approach to alleviate neuropathological problems focused on the liver-brain axis.

Effects of Hwagi-Jogyeong-Tang (HJT) on Human HaCaT keratinocyte and malignant melanoma cells (화기조경탕(化氣調經湯)이 피부 세포 재생 및 악성 흑색종 세포에 미치는 영향)

  • Go, Hong-gae;Park, Su-yeon;Kim, Jong-han;Choi, Jeong-hwa
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.20 no.3
    • /
    • pp.14-28
    • /
    • 2007
  • Objective : Hwagi-Jokyeong-Tang (化氣調經湯, HJT) was described in DongeuiBogam(東醫寶鑑). This remedy has been used to treat patients with Naryeok, which is similar as tuberculous cervical lymphadenitis in western medicine. Methods : In this study, the present author investigated the effects of HJT on on Human HaCaT keratinocyte and malignant melanoma cells such as SK-MEL-2 and B16F10 in terms of cell viabilities, proliferations, DPPH free radical scavenging activities, oxygen free radical productions and inhibitory action on elastase activities. Results : HJT acceleated proliferation of HaCaT keratinocytes dose-dependantly. HJT also prevented cell death of HaCaT induced by Hydrogen peroxide, which products oxygen free radicals. On the contrary, HJT did not affect proliferations of SK-MEL-2 or B16F10. In addition, HJT was shown to have DPPH free radical scavenging activities and also have inhibitory effects on elastase activities too. On the fluorescent examinations, the present author know that HJT did not affect production levels of oxygen free radicals in malignant melanoma cell, SK-MEL-2. Conclusions : These results suggest that HJT has possibilities of usage for functional cosmetics which have skin regeneration or prevention from skin tissue injury.

  • PDF

Epigenetic Regulation in the Brain after Spinal Cord Injury : A Comparative Study

  • Park, Bit-Na-Ri;Kim, Seok Won;Cho, Sung-Rae;Lee, Ji Yong;Lee, Young-Hee;Kim, Sung-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.6
    • /
    • pp.337-341
    • /
    • 2013
  • Objective : After spinal cord injury (SCI), functional and structural reorganization occurs at multiple levels of brain including motor cortex. However, the underlying mechanism still remains unclear. The current study was performed to investigate the alterations in the expression of the main regulators of neuronal development, survival and death, in the brain following thoracic contusive SCI in a mouse model. Methods : Eight-week-old female imprinting control region mice (n=60; 30-35 g) were used in this study. We analyzed the expression levels of regulators such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF) and histone deacetylase (HDAC) 1 in the brain following thoracic contusive SCI. Results : The expression of BDNF levels were elevated significantly compared with control group at 2 weeks after injury (p<0.05). The expression of NGF levels were elevated at 2, 4 weeks compared with control group, but these difference were not significant (p>0.05). The GDNF levels were elevated at 2 week compared with control group, but these differences were not significant (p>0.05). The difference of HDAC1 levels were not significant at 2, 4 and 8 weeks compared with control group (p>0.05). Conclusion : These results demonstrate that the upregulation of BDNF may play on important role in brain reorganization after SCI.

Cellular and Biochemical Mechanism of Perinatal Hypoxic-Ischemic Brain Injury (주산기 저산소-허혈 뇌손상의 세포 생화학적 기전)

  • Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.5
    • /
    • pp.560-567
    • /
    • 2002
  • 주산기 뇌손상은 주로 급격한 저산소-허혈 손상에 의하는데 급격한 산소 공급의 차단은 oxidative phosphorylation을 정지 시켜서 뇌대사를 위한 에너지 공급이 차단되게 된다. 에너지 공급이 차단된 뇌세포는 뇌세포막에서 세포 내외의 이온 농도 차를 유지시키던 ATP-dependent $Na^{+}-K^{+}$ pump의 기능이 정지 되고, 세포 내외의 농도 차에 따라 $Na^{+}$, $Cl^{+}$, $Ca^{{+}{+}}$의 대규모 세포 내로 이동이 일어난다. 세포 내로 calcium 이온의 이동은 glutamate 수용체의 활성화에 의해서도 일나는데, 세포 내 calcium 이온의 증가는 protease, lipase, nuclease 등을 활성화 시켜 세포를 사망에 이르게 하는 연속적이고 다양한 생화학적 반응을 일으키게 된다. Glutamate는 대표적인 신경 전달 물질인데 저산소-허혈 손상 시 glutamate 수용체의 지나친 흥분은 미성숙 뇌에 뇌손상을 유발하는데, NMDA 또는 non-NMDA 수용체와 복합체를 형성하고 있는 calcium 이동 통로를 활성화 시켜 세포 내 calcium 이온을 증가시키고, 그 외에 metabotropic recetor는 G-protein의 활성화 등을 통해 뇌손상을 유발하는 다양한 생화학적 반응을 매개한다. 저산소-허혈 손상 후 재산소화와 재관류가 일어나면서 뇌세포의 지연성 사망(secondary neuronal death)이 일어나는데 이는 초기 손상 후 뒤이어 일어나는 다양한 생화학적 반응에 의하는데 다량의 산소 자유기 발생, nitric oxide의 생성, 염증 반응과 싸이토카인, 신경전도 물질의 과흥분 등이 관여하며, 신경 세포 사망은 세포괴사(necrosis)뿐 아니라 일부는 세포 사멸(apoptosis)로 알려진 의도된 세포 사망(programmed cell death)에 의한 것으로 생각되고 있다(Fig. 2).

Peroxynitrite Scavenging Mechanism of Alaternin and Nor-rubrofusarin glucose from Cassia tora

  • Park, Tae-Hyun;Jung, Hyun-Ah;Choi, Jae-Sue;Chung, Hae-Young
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.318.3-319
    • /
    • 2002
  • Peroxynitrite(ONOO-), formed from the reaction of superoxide(O2-) and nitric oxide(NO), is a potent oxidant that contributes to oxidation of various cellular constituents including lipids. amino acids, sulphydryls and nucleotides. It can cause cellular injury such as DNA fragmentation and apoptotic cell death. Also. the toxicity of ONOO- has been reported to be involved in inflammatory and nurodegenerative diseases such as Alzheimer's disease, Parkinson's disease. and atherosclerosis. (omitted)

  • PDF

Effects of Ginseng Radix on the ischemia-induced 4-vessel occlusion and cognitive impairments in the rat

  • Kim, Young-Ock
    • Journal of Ginseng Research
    • /
    • v.31 no.1
    • /
    • pp.44-50
    • /
    • 2007
  • Ginseng powerfully tonifies the original Qi. Ginseng used for insomnia, palpitations with anxiety, restlessness from deficient Qi and blood and mental disorientation. In order to investigate whether Ginseng cerebral ischemia-induced neuronal and cognitive impairments, we examined the effect of Ginseng on ischemia-induced cell death in the hippocampus, and on the impaired learning and memory in the Morris water maze and passive avoidance in rats. Ginseng when administered to rat at a dose of 200 mg/kg i.p. water extracts to 0 minutes and 90 minutes after 4-VO, significantly neuroprotective effects by 86.4% in the hippocampus of treated rats. For behavior test, rats were administered Ginseng (200mg/kg p.o.) daily for two weeks, followed by their training to the tasks. Treatment with Ginseng produced a marked improvement in escape latency to find the platform in the Morris water maze. Ginseng reduced the ischemia-induced learning disability in the passive avoidance. Consistent with behavioral data, treatments with Ginseng reduced jschemia-induced cell death in the hippocampal CA1 area. Oxidative stress is a causal factor in the neuropathogenesis of ischemic-reperfusion injury. Oxidative stress was examined in a rat model of global brain ischemia. The effects of Ginseng on lipid peroxidation (inhibition of the production of malondialdehyde, MDA) in different regions of the rat brain were studied. Ferrous sulfate and ascorbic acid (FeAs) were used to induce lipid peroxidation. The antiperoxidative effect showed 48-72% protection from tissue damage as compared with untreated animals. These results showed that Ginseng have a protective effect against ischemia-induced neuronal loss and learning and memory damage.

Berberine Prevents Intestinal Mucosal Barrier Damage During Early Phase of Sepsis in Rat through the Toll-Like Receptors Signaling Pathway

  • Li, Guo-Xun;Wang, Xi-Mo;Jiang, Tao;Gong, Jian-Feng;Niu, Ling-Ying;Li, Ning
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Our previous study has shown berberine prevents damage to the intestinal mucosal barrier during early phase of sepsis in rat through mechanisms independent of the NOD-like receptors signaling pathway. In this study, we explored the regulatory effects of berberine on Toll-like receptors during the intestinal mucosal damaging process in rats. Male Sprague-Dawlay (SD) rats were treated with berberine for 5 d before undergoing cecal ligation and puncture (CLP) to induce polymicrobial sepsis. The expression of Toll-like receptor 2 (TLR 2), TLR 4, TLR 9, the activity of nuclear factor-kappa B ($NF-{\kappa}B$), the levels of selected cytokines and chemokines, percentage of cell death in intestinal epithelial cells, and mucosal permeability were investigated at 0, 2, 6, 12 and 24 h after CLP. Results showed that the tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) level were significantly lower in berberine-treated rats compared to the control animals. Conversely, the expression level of tight junction proteins, percentage of cell death in intestinal epithelial cells and the mucosal permeability were significantly higher in berberine-treated rats. The mRNA expression of TLR 2, TLR 4, and TLR 9 were significantly affected by berberine treatment. Our results indicate that pretreatment with berberine attenuates tissue injury and protects the intestinal mucosal barrier in early phase of sepsis and this may possibly have been mediated through the TLRs pathway.

The Neuroprotective Effect of Rhizoma Arisaematis on 3-NP-induced Oxidative Injury of C6 Glial Cells (3-NP에 의해 유발된 신경교세포의 산화적 손상에 대한 남성(南星)의 보호효과)

  • Lee, Jung-Sup;Shin, Yong-Jin;Jeon, Ji-Young;Seol, Jae-Gyun;Choi, Chul-Won;Shin, Sun-Ho;Lee, In;Nam, Sang-Kyu
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.586-596
    • /
    • 2007
  • Objectives : This study aimed to investigate the underlying protective mechanism of Rhizoma Arisaematis(RA) on 3-NP-induced Cytotoxicity in rat C6 glial cells. Methods : We investigated treatment ofC6 cells with 20mM 3-NP and pretreatment with RA to cause loss of cell viability. and morphological change. which was associated with elevation of ROS level. increase in Bax/Bcl2 ratio and HIF-a protein expression Results : RA inhibited 3-NP-induced cell death in C6 glial cells and inhibited the changes of the : MMPT (mitochondria membrane potential transition) and inhibited the decrease of mitochondria complex II activity and 3-NP-induced ROS generation in C6 cells. And RA decreased the activity of HIF-a and Bax. and increased the activity of $Bcl_2$ in C6 glial cells Conclusions : RA markedly protects C6 glial cells from 3-NP-induced oxidative injury.

  • PDF

The Effects of NEES on PARP Expression and Cell Death in Rat Cerebral Cortex After Ischemic Injury

  • Kim, Sung-Won;Lee, Jung-Sook;Um, Ki-Mai;Kim, Ji-Sung;Lee, Suk-Hee;Choi, Yoo-Rim;Kim, Nyeon-Jun;Kim, Bo-Kyoung;Cho, Mi-Suk;Park, Joo-Hyun;Kim, Soon-Hee
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.1 no.2
    • /
    • pp.107-112
    • /
    • 2010
  • The majority of strokes are caused by ischemia and result in brain tissue damage, leading to problems of the central nervous system including hemiparesis, dysfunction of language and consciousness, and dysfunction of perception. The purpose of this study was to investigate the effects of Poly(ADP-ribose) polymerase(PARP) on necrosis in neuronal cells that have undergone needle electrode electrical stimulation(NEES) prior to induction of ischemia. Ischemia was induced in male SD rats(body weight 300g) by occlusion of the common carotid artery for 5 min, after which the blood was reperfused. After induction of brain ischemia, NEES was applied to Zusanli(ST 36), at 12, 24 and 48 hours. Protein expression was investigated using immuno-reactive cells, which react to PARP antibodies in cerebral nerve cells, and Western blotting. The results were as follows: In the cerebral cortex, the number of PARP reactive cells after 24 hours significantly decreased(p<.05) in the NEES group compared to the GI group. PARP expression after 24 hours significantly decreased(p<.05) in the NEES group compared to the GI group. As a result, NEES showed the greatest effect on necrosis-related PARP immuno-reactive cells 24 hours after ischemia, indicating necrosis inhibition, blocking of neural cell death, and protection of neural cells. Based on the results of this study, NEES can be an effective method of treating dysfunction and improving function of neuronal cells in brain damage caused by ischemia.

  • PDF