• 제목/요약/키워드: cell identity

검색결과 167건 처리시간 0.03초

Enhanced Secretion of Cell Wall Bound Enolase into Culture Medium by the sool-l Mutation of Saccharomyces cerevisiae

  • Kim, Ki-Hyun;Park, Hee-Moon
    • Journal of Microbiology
    • /
    • 제42권3호
    • /
    • pp.248-252
    • /
    • 2004
  • In order to identify the protein(s) secreted into culture medium by the sool-l/retl-l mutation of Saccharomyces cerevisiae, proteins from the culture medium of cells grown at permissive (28$^{\circ}C$) and non-permissive temperatures (37$^{\circ}C$), were analyzed. Comparison of protein bands separated by SDS-PAGE identified a prominent band of 47-kDa band from a mutant grown at 37$^{\circ}C$. N-terminal amino acid sequencing of this 47-kDa protein showed high identity with enolases 1 and 2. Western blot analysis revealed that most of the cell wall-bound enolase was released into the culture medium of the mutant grown at 37$^{\circ}C$, some of which were separated as those with lower molecular weights. Our results, presented here, indicate the impairment of cell wall enolase biogenesis and assembly by the sool-l/retl-l mutation of S. cerevisiae.

Transcriptional regulatory network during development in the olfactory epithelium

  • Im, SeungYeong;Moon, Cheil
    • BMB Reports
    • /
    • 제48권11호
    • /
    • pp.599-608
    • /
    • 2015
  • Regeneration, a process of reconstitution of the entire tissue, occurs throughout life in the olfactory epithelium (OE). Regeneration of OE consists of several stages: proliferation of progenitors, cell fate determination between neuronal and non-neuronal lineages, their differentiation and maturation. How the differentiated cell types that comprise the OE are regenerated, is one of the central questions in olfactory developmental neurobiology. The past decade has witnessed considerable progress regarding the regulation of transcription factors (TFs) involved in the remarkable regenerative potential of OE. Here, we review current state of knowledge of the transcriptional regulatory networks that are powerful modulators of the acquisition and maintenance of developmental stages during regeneration in the OE. Advance in our understanding of regeneration will not only shed light on the basic principles of adult plasticity of cell identity, but may also lead to new approaches for using stem cells and reprogramming after injury or degenerative neurological diseases.

5G NR 시스템에서 PSS/SSS를 이용한 Cell ID 검출 방법 (Cell ID Detection Schemes Using PSS/SSS for 5G NR System)

  • 안해성;김형석;차은영;김정창
    • 방송공학회논문지
    • /
    • 제25권6호
    • /
    • pp.870-881
    • /
    • 2020
  • 본 논문에서는 5G NR (new radio) 시스템에서 PSS/SSS (primary synchronization signal/secondary synchronization signal)를 이용한 cell ID (cell identity) 검출 방법들을 제시하고 성능을 평가한다. 시간 영역에서 PSS를 먼저 검출한 후 검출된 PSS 정보를 이용하여 채널 추정 및 SSS의 시퀀스 검출에 사용하는 2단계(2-stage) 검출 방법과 PSS와 SSS 시퀀스를 결합하여 동시에 검출하는 결합 검출(joint detection) 방법을 사용한다. 또한, 추정한 채널 이득을 이용하여 주어진 PSS 및 SSS의 전체 시퀀스 길이의 상관(correlation) 값을 계산하는 coherent 방법과 시퀀스의 전체 길이를 여러 개의 그룹으로 나누어 각 그룹 내에서는 coherent 상관을 계산하고, 이들을 결합하여 전체 그룹의 상관 값을 계산하는 non-coherent combining 방법을 제시한다. 본 논문에서 고려한 검출 방법들에 대해 전산 실험을 통하여 PSS 및 SSS의 개별 검출 에러율과 전체 cell ID 검출 에러율 성능을 비교한다. 전산 실험 결과는 가산 백색 가우시안 잡음환경과 고정 및 이동 환경에서 non-coherent combining 방법이 coherent 방법에 비해 우수한 검출 성능을 보이며, 결합 검출 방법은 2단계 검출 방법에 비해 우수한 성능을 보이나 계산 복잡도 측면에서는 2단계 검출 방법이 보다 낮은 복잡도를 갖는다는 것을 보여준다.

Single-cell and spatial transcriptomics approaches of cardiovascular development and disease

  • Roth, Robert;Kim, Soochi;Kim, Jeesu;Rhee, Siyeon
    • BMB Reports
    • /
    • 제53권8호
    • /
    • pp.393-399
    • /
    • 2020
  • Recent advancements in the resolution and throughput of single-cell analyses, including single-cell RNA sequencing (scRNA-seq), have achieved significant progress in biomedical research in the last decade. These techniques have been used to understand cellular heterogeneity by identifying many rare and novel cell types and characterizing subpopulations of cells that make up organs and tissues. Analysis across various datasets can elucidate temporal patterning in gene expression and developmental cues and is also employed to examine the response of cells to acute injury, damage, or disruption. Specifically, scRNA-seq and spatially resolved transcriptomics have been used to describe the identity of novel or rare cell subpopulations and transcriptional variations that are related to normal and pathological conditions in mammalian models and human tissues. These applications have critically contributed to advance basic cardiovascular research in the past decade by identifying novel cell types implicated in development and disease. In this review, we describe current scRNA-seq technologies and how current scRNA-seq and spatial transcriptomic (ST) techniques have advanced our understanding of cardiovascular development and disease.

Screening of Transcriptional Regulator of the Draf Proto-oncogene Using the Yeast One-hybrid System

  • Park, So-Young;Park, Na-Hyun;Kwon, Eun-Jeong;Yoo, Mi-Ye
    • Journal of Life Science
    • /
    • 제9권2호
    • /
    • pp.52-56
    • /
    • 1999
  • The Raf, a cytoplasmic serine/thereonine protein kinase, acts as an important mediator of signals involving cell proliferation, differentiation and development. Multiple regulatory elements should participate in the expression of D-raf, Drosophila homolog of human c-raf-1. In order to search regulatory factors involved in the D-raf promoter activation, we accomplished the yeast one-hybrid screening using D-raf promoter region from bp-330 to -309 with respect to the transcription initiation site as bait. After screening, sixteen independent positive clones of ${\beta}$-galactosidase activties were identified and sequenced. Two clones having 94-98% identity with daughterless and one clone having 93% identity with escargot by Blast search among these clones were screened.

Immunofluorescence Localization of Schizosaccharomjyces pombe $cdc103^{+}$ Gene Product

  • Kim, Hyong-Bai
    • Journal of Microbiology
    • /
    • 제34권3호
    • /
    • pp.248-254
    • /
    • 1996
  • $cdc103^+$ gene in Schizosaccharomyces pombe which is similar to the CDC3 gene in Saccharomyces cerevisiae was cloned and sequenced. Comparison of the predicted amino acid sequences of $cdc103^+$ and CDC3 revealed that they share significant similarity (43% identity and 56% identity or similarity) to each other. The gene product of CDC3 in S. cerevisiae is known to be a highly ordered ring of filaments that lies just inside the cytoplasmic membrane in the region of the mother-bud neck. In order to characterize the gene product of $cdc103^+$ in Schizosaccharomyces pombe, fusion proteins were used to generate the polyclonal antibodies specific for the gene product (cdc103p). In immunofluorescence experiments, these antibodies decorate the region of the septum formation as a double ring structure late in the cell division cycle.

  • PDF

Sequence analysis of the schizosaccharomycs pombe homologue of the CDC3 gene in saccharomyces cerevisiae

  • Kim, Hyong-Bai
    • Journal of Microbiology
    • /
    • 제33권4호
    • /
    • pp.350-354
    • /
    • 1995
  • Saccharomyces cervisiae has a highly ordered ring of filaments that lies just inside the cytoplasmic membrane in the region of the mother-bud neck. Mutants defective in any one of the our cell division cycle genes (CDC3, CDC10, CDC11, CDC12) fail to form these filaments and exhibit a pleiotropic phenotype that includes failure to complete cytokinesis and abnormal bud growth. However, the role of the filament is not clear. In order to find out the role of filament, the similar gene in S pombe (called cdc103$\^$+) to the CDC3 was cloned and sequenced. Here I report the sequence analysis of the cdc103$\^$+/ ) to the CDC3 was cloned and sequenced. Here I report the sequence analysis of the cdc103$\^$+/. Comparison of the predicted amino acid sequences of cdc103$\^$+/ and CDC3 revealed that they share significant similarity (43% identity and 56% identity or similarity) to each other.

  • PDF

First Record of an Ectoparasitic Dinoflagellate, Oodinium inlandicum (Dinophyta) Infecting a Chaetognath, Sagitta crassa from the Korean Coasts

  • Horiguchi, Takeo;Harada, Ai;Ohtsuka, Susumu;Soh, Ho-Young;Yoon, Yang-Ho
    • ALGAE
    • /
    • 제19권3호
    • /
    • pp.201-205
    • /
    • 2004
  • An ectoparasitic din flagellate infesting plank tonic chaetognath, Sagitta crassa Tokioka was found, for the first time, from Korean coasts. In order to identify the species, we investigated detailed morphology of the din flagellate using Nomarski interference optics as well as epifluorescent microscopes. The parasitic din flagellate consists of an oval to rod-shaped cell with a peduncle, by which the organism attaches to the host. The cell is covered with polygonal thecal plates. The nucleus displays two different shapes according to cell cycle stages: in young trophont the nucleus is elongated and shows typical din flagellate nucleus (dinokaryon), while in matured trophont, the nucleus is dome-shaped and non-dinokaryotic. The peduncle is variable in length and is ornamented with the longitudinal striations. All these characteristics point to identity that the ectoparasitic din flagellate infecting Sagitta crassa in Korean coasts is Oodinium inlandicum Horiguchi et Ohtsuka, originally described from the Seto Inland Sea of Japan. Relationship between prevalence and host sizes differed from those in Japan.

Cloning and Expression of a cDNA AAPT3 Encoding Aminoalcoholphosphotransferase Isoform from Chinese Cabbage

  • Kim, Kwang-Soo;Park, Jong-Ho;Cho, Sung-Ho
    • Animal cells and systems
    • /
    • 제8권2호
    • /
    • pp.105-109
    • /
    • 2004
  • Aminoalcoholphosphotransferase catalyzes the synthesis of phosphatidylcholine and phosphatidylethanolamine from diacylglycerol plus a CDP-aminoalcohol such as CDP-choline or CDP-ethanolamine. Previously we suggested the presence of possible isoforms of this enzyme from Chinese cabbage roots and now report the cDNA cloning and expression analysis of AAPT3 encoding a third isoform of aminoalcoholphosphotransferase (AAPT3). AAPT3 contains an open reading frame of 1,176 bp coding for a protein of 392 amino acids. It shares 96 and 95% identity with Chinese cabbage AAPT1 and AAPT2, respectively, at the deduced amino acid level. The results from reverse transcriptase-polymerase chain reaction analysis indicate that expression of AAPT3 is up-regulated by low temperature as well as AAPT1 and AAPT2.

Role of CaBud6p in the Polarized Growth of Candida albicans

  • Song Yun-Kyoung;Kim Jeong-Yoon
    • Journal of Microbiology
    • /
    • 제44권3호
    • /
    • pp.311-319
    • /
    • 2006
  • Bud6p is a component of a polarisome that controls cell polarity in Saccharomyces cerevisiae. In this study, we investigated the role of the Candide albicans Bud6 protein (CaBud6p) in cell polarity and hyphal development. CaBud6p, which consists of 703 amino acids, had 37% amino-acid sequence identity with the Bud6 protein of S. cerevisiae. The homozygous knock-out of CaBUD6 resulted in several abnormal phenotypes, such as a round and enlarged cells, widened bud necks, and a random budding pattern. In hypha-inducing media, the mutant cells had markedly swollen tips and a reduced ability to switch from yeast to hypha. In addition, a yeast two-Hybrid analysis showed a physical interaction between CaBud6p and CaAct1p, which suggests that CaBud6p may be involved in actin cable organization, like Bud6p in S. cerevisiae. Taken together, these results indicate that CaBud6 plays an important role in the polarized growth of C. albicans.