• 제목/요약/키워드: cell cycling

검색결과 256건 처리시간 0.026초

Study on the Cycling Performances of Lithium-Ion Polymer Cells Containing Polymerizable Additives

  • Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권2호
    • /
    • pp.319-322
    • /
    • 2009
  • Gel polymer electrolytes were prepared by immersing a porous poly(vinylidene fluoride-co-hexafluoropropylene) membrane in an electrolyte solution containing small amounts of polymerizable additive (3,4-ethylenedioxythiophene, thiophene, biphenyl). The organic additives were electrochemically oxidized to form conductive polymer films on the electrode at high potential. With the gel polymer electrolytes containing different organic additive, lithium-ion polymer cells composed of carbon anode and LiCo$O_2$ cathode were assembled and their cycling performances were evaluated. Adding small amounts of thiophene or 3,4-ethylenedioxythiophene to the gel polymer electrolyte was found to reduce the charge transfer resistance in the cell and it thus exhibited less capacity fading and better high rate performance.

A Study on Long-Term Cycling Performance by External Pressure Change for Pouch-Type Lithium Metal Batteries

  • Seong-Ju Sim;Bong-Soo Jin;Jun-Ho Park;Hyun-Soo Kim
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.314-320
    • /
    • 2024
  • Lithium dendrite formation is one of the most significant problems with lithium metal batteries. The lithium dendrite reduces the lithium metal batteries' cycling life and safety. To apply consistent external pressure to a lithium metal pouch cell, we design a press jig in this study. External pressure creates dense lithium morphology by preventing lithium dendrite formation. After 300 cycles at 1 C, the cells with the external pressure perform far better than the cells without it, with a cycling retention of 97.8%. The formation of stable lithium metal is made possible by external pressure, which also enhances safety and cyclability.

유세포 분석기를 이용한 치근단 병소의 임파구 조성 및 CYCLING CELL 분포에 관한 연구 (FLOW CYTOMETRIC ANALYSIS OF LYMPHOCYTE AND CYCLING CELL DISTRIBUTION IN PERIAPICAL LESIONS)

  • 오태석;임성삼
    • Restorative Dentistry and Endodontics
    • /
    • 제18권2호
    • /
    • pp.317-340
    • /
    • 1993
  • This study was designed 1) to compare the distributions of periapical inflammatory cells and 2) to identify lymphocytes and compare the lymphocyte distribution with T lymphocyte subpopulation and then 3) to examine the distribution of cycling cell in human dental periapical lesions. From each of the twenty-five human dental periapical lesions observed one small portion was fixed, embeded in paraffin, sectioned serially and stained with HE. The periapical inflammatory cells were counted to obtain the relative concentration of lymphocyte, plasma cell, macrophage and neutrophil. The large part of each lesion was analysed using Flow cytometer and monoclonal antibodies to obtain the relative concentration of T lymphocyte, B lymphocyte, T'helper cell and T suppressor/cytotoxic cell. In addition to that, seven human dental periapical lesions were examined with DNA analysis to observe the distribution of cycling cell. Following results were obtained: 1. 24 cases of the 32 periapical lesions examined were diagnosed as periapical granuloma and the remaining 8 cases as periapical cyst. Lymphocytes comprised 42.1% of total inflammatory cells in periapical granuloma and 41.8% in periapical cyst. Corresponding percentages for macrophages were 33.8% and 30.3%; for plasma cells, 15.9% and 19.0%; for neutrophils, 8.2% and 8.8%. 2. All of the periapical lesions examined had T lymphocyte, B lymphocyte, T helper cell, T suppressor/cytotoxic cell. And in all cases, T lymphocytes were observed predominantly more than B lymphocytes. 3. In 2 cases of the control group only T lymphocytes were found, and in the remaining 2 cases T lymphocytes were observed predominantly. 4. T helper cells were observed predominantly more than T suppressor/cytotoxic cells in all cases of perapical granulomas. 5. T suppressor/cytotoxic cells were observed predominantly more than T helper cells in 4 cases of periapical cysts (total 5 cases were examined) and only in one case T helper cells were more than T suppressor/cytotoxic cells. 6. In control group, T helper cells were predominant in 2 cases and T helper cells were equivalent to T suppressor/cytotoxic cells in one case. In remaining one case T suppressor/cytotoxic cells were predominant. 7. As the result of DNA analysis, the average proliferating indices of the various groups examined were measured as follows: in the control group 5.45%, in periapical granuloma 6.64%, in periapical cyst 10.1%. The highest index was observed in periapical cyst.

  • PDF

Degradation Mechanisms of a Li-S Cell using Commercial Activated Carbon

  • Norihiro Togasaki;Aiko Nakao;Akari Nakai;Fujio Maeda;Seiichi Kobayashi;Tetsuya Osaka
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.361-368
    • /
    • 2023
  • In lithium-sulfur (Li-S) batteries, encapsulation of sulfur in activated carbon (AC) materials is a promising strategy for preventing the dissolution of lithium polysulfide into electrolytes and enhancing cycle life, because instead of solid-liquid-solid reactions, quasi-solid-state (QSS) reactions occur in the AC micropores. While a high weight fraction of sulfur in S/AC composites is essential for achieving a high energy density of Li-S cells, the deterioration mechanisms under such conditions are still unclear. In this study, we report the deterioration mechanisms during charge-discharge cycling when the discharge products overflow from the AC. Analysis using scanning electron microscopy and energy-dispersive X-ray spectrometry confirms that the sulfur in the S/AC composites migrates outside the AC as cycling progresses, and it is barely present in the AC after 20 cycles, which corresponds to the capacity decay of the cell. Impedance analysis clearly shows that the electrical resistance of the S/AC composite and the charge-transfer resistance of QSS reactions significantly increase as a result of sulfur migration. On the other hand, the charge-discharge cycling performance under limited-capacity conditions, where the discharge products are encapsulated inside the AC, is extremely stable. These results reveal the degradation mechanism of a Li-S cell with micro-porous carbon and provide crucial insights into the design of a S/AC composite cathode and its operating conditions needed to achieve stable cycling performance.

Novel estimation method of operating life in lithium-ion pouch cells

  • Kim, Hyosung;Kim, Jaekwang;Kim, Nayeong;Lee, Ilbok;Hwang, Keebum;Bae, Joongho;Yoon, Songhun
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.266-275
    • /
    • 2018
  • Herein, a novel operating life (OL) test method was evaluated with 200 mAh pouch-type lithium-ion batteries. By combining the calendar life (CL) test with intermediate pulse power cycling, more realistic life prediction was possible, which encompassed real operation of batteries accompanying with thermal acceleration. Larger capacity decrease and resistance increase of pouch cell were observed in the OL test, which was well explained using the SEI film growth model. After dissemble of pouch cell, capacity loss and resistance increase mostly occurred within anode, reflecting that SEI film growth on anode surface was highly attributable to cell degradation.

평관형 고체 산화물 연료전지의 연료극 지지체 NiO/YSZ의 환원 및 재산화 거동 특성 (Redox Behaviors of NiO/YSZ Anode Tube in Anode-Supported Flat Tubular Solid Oxide Fuel Cells)

  • 송락현;이길용;신동열
    • 한국수소및신에너지학회논문집
    • /
    • 제17권1호
    • /
    • pp.82-89
    • /
    • 2006
  • The redox behaviors of anode-supported flat tube for solid oxide fuel cell has been studied. The mass change of the extruded NiO/YSZ anode flat tube during redox cycling was examined by thermogravimetric analysis(TGA). The result of TGA was shown a rapidly mass change in the range of $455\;-\;670^{\circ}C$ and the reoxidation of the NiO/YSZ anode was almost completed at $750^{\circ}C$. The starting temperature of reoxidation and the maximum temperature of oxidation rate decreased with increasing the reoxidation cycle, which is attributed to the increased porosity caused by volume change. Bending strengths of the NiO/YSZ anode after redox cycling were 96 - 80 MPa and the bending strength decreased slightly with increasing the redox cycle. On the other hand, the bending strength of the NiO/YSZ anode with electrolyte showed 130 MPa after first redox cycling but decreased rapidly with increasing the redox cycle. From the results of the bending test and the microstructure observation, we conclude that the crack initiation of the electrolyte-coated NiO/YSZ anode was induced easily at interface of electrolyte/anode tube and propagated cross the electrolyte.

Zr-based 수소저장합금을 음극으로 사용한 밀패형 Ni-MH 2차전지의 내압특성에 관한 연구 (A study on the characteristics of inner cell pressure for sealed type Ni-MH rechargeable battery using Zr-based hydrogen storage alloy as anode)

  • 김동명;이호;장국진;이재영
    • 한국수소및신에너지학회논문집
    • /
    • 제8권2호
    • /
    • pp.79-90
    • /
    • 1997
  • Extensive work has been done on investigating the inner cell pressure characteristics of sealed type Ni-MH battery in which Zr-Ti-Mn-V-Ni alloy is used as anode. The inner cell pressure of this type Ni-MH battery much more increases with the charge/discharge cycling than that of the other type Ni-MH battery where commercialized $AB_5$ type alloy is used as anode. The increase of inner cell pressure in the sealed type Ni/MH battery using Zr-Ti-Mn-V-Ni alloy system is mainly due to the accumulation of oxygen gas during charge/discharge cycling. The accumulation of oxygen gas arises mainly due to the low rate of oxygen recombination on the MH electrode surface during charge/discharge cycling. The difference of oxygen recombination rate between $AB_5$ type electrode and Zr-Ti-Mn-V-Ni electrode is caused by the difference of electrode reaction surface area resulting from different particle size after their activation and the difference of surface catalytic activity for oxygen recombination reaction, respectively. After EIS analysis, it is identified that the surface catalytic activity affects much more dominantly on the oxygen recombination reaction than the reaction surface area does. In order to suppress the inner cell pressure of Ni-MH battery where Zr-Ti-Mn-V-Ni is used as anode, it is suggested that the surface catalytic activity for oxygen recombination should be improved.

  • PDF

Effects of Down-regulation of HDAC6 Expression on Proliferation, Cell Cycling and Migration of Esophageal Squamous Cell Carcinoma Cells and Related Molecular Mechanisms

  • Li, Ning;Tie, Xiao-Jing;Liu, Pei-Jie;Zhang, Yan;Ren, Hong-Zheng;Gao, Xin;Xu, Zhi-Qiao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권2호
    • /
    • pp.685-689
    • /
    • 2013
  • Objective: To study the effects of down-regulation of HDAC6 expression on proliferation, cell cycling and migration of esophageal squamous cell carcinoma (ESCC) cells and related molecular mechanisms. Methods: ESCC cell line EC9706 cells were randomly divided into untreated (with no transfection), control siRNA (transfected with control siRNA) and HDAC6 siRNA (transfected with HDAC6 small interfering RNA) groups. Effects of HDAC6 siRNA interference on expression of HDAC6 mRNA and protein in EC9706 cells were investigated by semi-quantitative RT-PCR, Western blotting and immunocytochemistry methods. Effects of down-regulation of HDAC6 expression on cell proliferation, cell cycle, and cell migration were studied using a CCK-8 kit, flow cytometry and Boyden chambers, respectively. Changes of mRNA and protein expression levels of cell cycle related factor (p21) and cell migration related factor (E-cadherin) were investigated by semi-quantitative RT-PCR and Western blotting methods. Results: After transfection of HDAC6 siRNA, the expression of HDAC6 mRNA and protein in EC9706 cells was significantly downregulated. In the HDAC6 siRNA group, cell proliferation was markedly inhibited, the percentage of cells in G0/G1 phase evidently increased and the percentage of cells in S phase decreased, and the number of migrating cells significantly and obviously decreased. The mRNA and protein expression levels of p21 and E-cadherin in the HDAC6 siRNA group were significantly higher than those in the untreated group and the control siRNA group, respectively. Conclusions: HDAC6 siRNA can effectively downregulate the expression of HDAC6 mRNA and protein in EC9706 cells. Down-regulation of HDAC6 expression can obviously inhibit cell proliferation, arrest cell cycling in the G0/G1 phase and reduce cell migration. The latter two functions may be closely related with the elevation of mRNA and protein expression of p21 and E-cadherin.

고분자 전해질막 연료전지의 활성화를 위한 CV 활성화법 (Application of CV Cycling to the Activation of the Polymer Electrolyte Membrane Fuel Cell)

  • 조기윤;정호영
    • 공업화학
    • /
    • 제23권5호
    • /
    • pp.445-449
    • /
    • 2012
  • 고분자 전해질막 연료전지의 대량 생산을 위하여 막-전극 접합체(MEA) 활성화 방법의 개발이 중요한 현안이다. 현재 개발된 MEA활성화 방법은 시간이 많이 소요됨으로 인해 수소의 사용량 또한 증가하여 연료전지의 상용화에 큰 걸림돌이 되고 있다. 통상적인 활성화 방법은 활성화 원리를 주로 전해질 수화 관점에서 이해하였다. 반면, 본 논문에서 제안된 순환전압전류(cyclic voltammetry, CV) 활성화 방법은 전해질 및 촉매적 관점에서 별도로 분리하여 이해하였다. 따라서 전해질 관점에서는 상대 습도 100%인 가습된 질소를 공급하여 전극 및 막의 전해질을 수화시키는 과정으로 구성되고, 촉매적 관점에서는 CV 사이클을 수행하여 백금 촉매에 흡착되어 있는 불필요한 오염물질, 또는 산화피막을 제거하는 과정으로 수행된다. CV 활성화법은 2.5 h 내에 활성화가 종료되어 활성화 시간을 크게 단축시킬 수 있을 뿐만 아니라, 수소 사용량도 기존 활성화 방법에 비하여 1/4 이하로 감소시킬 수 있어서 효과적인 연료전지 활성화 방법으로 제안하고자 한다.