Browse > Article
http://dx.doi.org/10.1016/j.jiec.2018.06.037

Novel estimation method of operating life in lithium-ion pouch cells  

Kim, Hyosung (School of Integrative Engineering, Chung-Ang University)
Kim, Jaekwang (School of Integrative Engineering, Chung-Ang University)
Kim, Nayeong (School of Integrative Engineering, Chung-Ang University)
Lee, Ilbok (School of Integrative Engineering, Chung-Ang University)
Hwang, Keebum (School of Integrative Engineering, Chung-Ang University)
Bae, Joongho (School of Integrative Engineering, Chung-Ang University)
Yoon, Songhun (School of Integrative Engineering, Chung-Ang University)
Publication Information
Journal of Industrial and Engineering Chemistry / v.67, no., 2018 , pp. 266-275 More about this Journal
Abstract
Herein, a novel operating life (OL) test method was evaluated with 200 mAh pouch-type lithium-ion batteries. By combining the calendar life (CL) test with intermediate pulse power cycling, more realistic life prediction was possible, which encompassed real operation of batteries accompanying with thermal acceleration. Larger capacity decrease and resistance increase of pouch cell were observed in the OL test, which was well explained using the SEI film growth model. After dissemble of pouch cell, capacity loss and resistance increase mostly occurred within anode, reflecting that SEI film growth on anode surface was highly attributable to cell degradation.
Keywords
Operating life estimation; Calendar life; Pulse power cycling; Pouch-type cells; Film growth model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D.P. Abraham, J. Liu, C.H. Chen, Y.E. Hyung, M. Stoll, N. Elsen, S. MacLaren, R. Twesten, R. Haasch, E. Sammann, I. Petrov, K. Amine, G. Henriksen, J. Power Sources 119 (2003) 511.
2 Y.Y. Xia, T. Sakai, T. Fujieda, X.Q. Yang, X. Sun, Z.F. Ma, J. McBreen, M. Yoshio, J. Electrochem. Soc. 148 (2001) A723.   DOI
3 W. Choi, A. Manthiram, J. Electrochem. Soc. 154 (2007) A792.   DOI
4 T. Yoshida, M. Takahashi, S. Morikawa, C. Ihara, H. Katsukawa, T. Shiratsuchi, J. Yamaki, J. Electrochem. Soc. 153 (2006) A576.   DOI
5 P. Arora, B.N. Popov, R.E. White, J. Electrochem. Soc. 145 (1998) 807.   DOI
6 L.R.F. Allen, J. Bard, Electochemical Methods: Fundamentals and Applications, John Wiley & Sons, Inc., 1998.
7 D.H. Jang, S.M. Oh, J. Electrochem. Soc. 144 (1997) 3342.   DOI
8 Ji-Hyun Kim, Min-Jung Jung, Min-Ji Kim, Young-Seak Lee, J. Ind. Eng. Chem. 61 (2018) 368.   DOI
9 E.V. Thomas, H.L. Case, D.H. Doughty, R.G. Jungst, G. Nagasubramanian, E.P. Roth, J. Power Sources 124 (2003) 254.   DOI
10 J.R. Belt, C.D. Ho, C.G. Motloch, T.J. Miller, T.Q. Duong, J. Power Sources 123 (2003) 241.   DOI
11 H. Seo, S. Na, B. Lee, T. Yim, S.H. Oh, J. Ind. Eng. Chem. 64 (2018) 311.   DOI
12 Q. Meng, Y. Zhang, P. Dong, F. Liang, J. Ind. Eng. Chem. 61 (2018) 133.   DOI
13 Freedom Car Battery Test Manual for Power Assist Hybrid Electric Vehicle, DOEID, 2003 p. 11069.
14 J. Neubauer, A. Pesaran, C. Bae, R. Elder, B. Cunningham, J. Power Sources 271 (2014) 614.   DOI
15 D. Kim, I. Lee, J. Kim, J.H. Ryu, H. Son, K.S. Ha, S. Yoon, Bull. Korean Chem. Soc. 36 (2015) 2658.   DOI
16 S. Yoon, I. Hwang, C.W. Lee, H.S. Ko, K.H. Han, J. Electroanal. Chem. 655 (2011) 32.   DOI
17 S. Yoon, H. Kim, S.M. Oh, J. Power Sources 94 (2001) 68.   DOI
18 D. Karner, J. Francfort, J. Power Sources 174 (2007) 69.   DOI
19 M.M. Thackeray, C. Wolverton, E.D. Isaacs, Energy Environ. Sci. 5 (2012) 7854.   DOI