• 제목/요약/키워드: cell cycle regulators

검색결과 76건 처리시간 0.032초

Cell Cycle and Cancer

  • Park, Moon-Taek;Lee, Su-Jae
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.60-65
    • /
    • 2003
  • Cancer is frequently considered to be a disease of the cell cycle. As such, it is not surprising that the deregulation of the cell cycle is one of the most frequent alterations during tumor development. Cell cycle progression is a highly-ordered and tightly-regulated process that involves multiple checkpoints that assess extracellular growth signals, cell size, and DNA integrity. Cyclin-dependent kinases (CDKs) and their cyclin partners are positive regulators of accelerators that induce cell cycle progression; whereas, cyclin-dependent kinase inhibitors (CKIs) that act as brakes to stop cell cycle progression in response to regulatory signals are important negative regulators. Cancer originates from the abnormal expression of activation of positive regulators and functional suppression of negative regulators. Therefore, understanding the molecular mechanisms of the deregulation of cell cycle progression in cancer can provide important insights into how normal cells become tumorigenic, as well as how cancer treatment strategies can be designed.

HepG2세포에서 향버섯 추출물이 세포주기 조절단백질에 미치는 영향 (Effect of Sarcodon aspratus Extract on Expression of Cell Cycle-Associated Proteins in HepG2 Cells)

  • 배준태;장종선;이갑랑
    • 한국식품영양과학회지
    • /
    • 제31권2호
    • /
    • pp.329-332
    • /
    • 2002
  • 본 연구는 사람의 간암세포인 HepG2 세포를 대상으로 강력한 암 예방 효과물질을 함유하고 있을 것으로 추측되는 향버섯 메탄올 추출물의 암세포 성장 저해 효과를 검토하고 또한 암세포 성장 억제 효과의 분자생물학적 기전을 파악하기 위하여 암세포주의 세포주기 조절인자들의 발현을 조사하였다. 향버섯 메탄을 추출물의 HePG2세포에 대한 성장 저해 효과를 MTT assay로 검토한 결과 높은 암세포 성장 저해 효과를 나타내었으며 사람의 정상 간세포인 Chang cell에서는 세포독성이 나타나지 않았다. 또한 향버섯 추출물의 작용으로 HepG2 세포에서 cyclin A와 Dl 단백질의 발현이 억제 되었으며 cyclin Bl 단백질의 발현은 증가하는 경향을 나타내었다. 그리고 암 억제 단백질인 p53의 발현은 전반적으로 증가되었으며, 이와 대조적으로 PCNA 단백질은 감소하는 경향을 나타내었고 세포분열 억제 단백질 p27의 발현은 증가 하는 경향을 나타내었다. 이러한 결과로 볼 때 향버섯 메탄올 추출물은 간암세포의 세포주기 중 Gl기 에서 S기로의 진행을 조절하는 인자인 cyclin A와 cyclin Dl 발현을 억제시키고 p53, p27 단백질을 활성화 시킴과 동시에 PCNA 작용을 억제 함으로써 세포주기 중 Gl/S기 차단을 유도하여 암세포 증식을 억제한 것으로 추정된다.

폐암세포주(肺癌細胞株) H460에 대(對)한 보중익기탕(補中益氣湯)의 세포고사효과(細胞枯死效果) 및 기전연구(機轉硏究) (Study on Apoptosis Effect and Mechanism by Bojungikki-tang on Human Cancer Cell Line H460)

  • 이승언;홍재의;이시형;신조영;노승석
    • 대한한방내과학회지
    • /
    • 제25권4호
    • /
    • pp.274-288
    • /
    • 2004
  • Objectives : This study was designed to evaluate the effect on cytotoxicity of Bojungikki-tang(BIT) in human lung cancer H460 cells. Methods : BIT-induced cell death was confirmed as apoptosis characterized by chromatin condensation and increase of the $sub-G_1$, DNA content. It was tested whether the water extract of BIT affects the cell cycle regulators such as, p2l/Cipl, p27/Kipl, cyclin $B_1$. Results : The data showed that treatment of BIT decreased the viability of H460 cells in a dose-dependent manner. p2l/Cip1 is gradually decreased by the addition of the cells with BIT extract. Interestingly, p27/Kip1 is not detected for 24 hr after the addition of BIT extract, however, after 24 hr, p27/Kipl markedly increased. In addition, cyclin $B_1$, decreased in a time dependent manner after the addition of the water extract. The activation of caspase -3 protease was further confirmed by degradation of procaspase-8 protease andpoly(ADP-ribose) polymerase(P ARP) by BIT in H460 cells. Moreover, BIT induced the increase of Bak expression. Conclusion : These results suggest that the extract of BIT exerts anticancer effects to induce the death of human lung cancer H460 cells via down regulation of cell cycle regulators such as p2l/Cip1, and cyclin B1 or up regulation of cell cycle regulators such as p27/Kip1. Moerover results suggest that BIT induces an apoptosis in H460 cells via activation of intrinsic caspase cascades.

  • PDF

히스톤 탈아세틸화 효소 억제제 trichostatin A가 C2C12 myoblast 세포 분화와 세포주기 조절인자의 발현에 미치는 영향 (Effects of Histone Deacetylase Inhibitor, Trichostatin A, on the Differentiation of C2C12 Myoblasts and the Expression of Cell Cycle Regulators)

  • 이원준
    • 생명과학회지
    • /
    • 제17권7호통권87호
    • /
    • pp.976-982
    • /
    • 2007
  • 본 연구는 분화 전단계인 C2C12 myoblast세포에 중요한 후천적 기작의 하나인 DNA 히스톤 단백질의 아세틸화를 조절하였을 때 일어나는 변화를 살펴본 결과, 히스톤 탈아세틸화 효소를 trichostatin A로서 억제시키자 C2C12 myoblast 세포가 smooth muscle로 분화하였다. 이는 immunofluorescentstaining을 통해 smooth muscle ${\alpha}-actin$의 발현 증가를 trishostatin A로 처리한 세포에서 관찰하였으며, DAPI 염색을 통해 대조군 세포와 비교하여 세포의 증식이 많이 억제됨을 관찰하였다. 또한 real-time PCR 결과는 smooth muscle ${\alpha}$-actin과 transgelin mRNA의 발현이 trichostatin A 처리군 세포에서 현저히 증가함을 보여주었다. 이러한 결과를 바탕으로 히스톤 단백질의 탈아세틸화 억제는 C2C12 myoblast 세포의 분화에 매우 중요한 역할을 하며, 또한 C2C12 myoblast 세포를 골격근인 다핵의 myotube로 분화시키지 않고, smooth muscle로 분화시킴을 알 수 있었다. 이것은 분명히 HDAC억제제 인 trichostatin A가 DNA 히스톤 단백질의 HDAC 효소에 의한 탈아세틸화를 강력히 억제하고, 이러한 HDAC효소의 억제는 세포주기에 있어서 증식과 분화를 조절하는 유전자들의 발현을 조절하였음을 시사한다. 이를 검증하기 위해 세포주기 조절인자인 p21과 cyclin Dl mRNA의 발현을 조사한 결과 세포를 증식단계로 진행하는데 있어서 필수적인 cdk 억제제인 p21 mRNA의 발현이 trichostatin A로 처리한 세포에서 현저히 증가함을 보였으며, 세포 증식을 유도하는 cyclin Dl mRNA의 발현은 trichostatin A를 처 리 한 후 24시간 후 유의하게 감소함을 보였는데 이는 trichostatin A가 세포증식을 억제하는 초기단계에서 cyclin Dl 유전자의 발현을 조절함을 보여준다. 향후 연구에서는 또 하나의 중요한 후천적 기작인 DNA 메틸화와 히스톤 아세틸화가 유전자 발현을 조절하는데 있어서 상호작용에 대한 연구가 필요할 것으로 생각된다.

ROLE OF CELL CYCLE REGULATORS IN NEUTOTOXIC EFFECTS OF 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN

  • Lee, Yong-Soo;Jin, Da-Qing;Kim, Jung-Ae
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Current Trends in Toxicological Sciences
    • /
    • pp.125-125
    • /
    • 2002
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is one of the best characterized environmental pollutants and is capable of causing a wide variety of toxicities including teratogenesis. TCDD has been known to increase as well as to decrease proliferation rates depending on the experimental conditions.(omitted)

  • PDF

LAMMER Kinase Modulates Cell Cycle by Phosphorylating the MBF Repressor, Yox1, in Schizosaccharomyces pombe

  • Kibum Park;Joo-Yeon Lim;Je-Hoon Kim;Jieun Lee;Songju Shin;Hee-Moon Park
    • Mycobiology
    • /
    • 제51권5호
    • /
    • pp.372-378
    • /
    • 2023
  • Lkh1, a LAMMER kinase homolog in the fission yeast Schizosaccharomyces pombe, acts as a negative regulator of filamentous growth and flocculation. It is also involved in the response to oxidative stress. The lkh1-deletion mutant displays slower cell growth, shorter cell size, and abnormal DNA content compared to the wild type. These phenotypes suggest that Lkh1 controls cell size and cell cycle progression. When we performed microarray analysis using the lkh1-deletion mutant, we found that only four of the up-regulated genes in the lkh1-deletion were associated with the cell cycle. Interestingly, all of these genes are regulated by the Mlu1 cell cycle box binding factor (MBF), which is a transcription complex responsible for regulating the expression of cell cycle genes during the G1/S phase. Transcription analyses of the MBF-dependent cell-cycle genes, including negative feedback regulators, confirmed the up-regulation of these genes by the deletion of lkh1. Pull-down assay confirmed the interaction between Lkh1 and Yox1, which is a negative feedback regulator of MBF. This result supports the involvement of LAMMER kinase in cell cycle regulation by modulating MBF activity. In vitro kinase assay and NetPhosK 2.0 analysis with the Yox1T40,41A mutant allele revealed that T40 and T41 residues are the phosphorylation sites mediated by Lkh1. These sites affect the G1/S cell cycle progression of fission yeast by modulating the activity of the MBF complex.

Analysis of microRNA expression profiles during the cell cycle in synchronized HeLa cells

  • Zhou, Jue-Yu;Ma, Wen-Li;Liang, Shuang;Zeng, Ye;Shi, Rong;Yu, Hai-Lang;Xiao, Wei-Wei;Zheng, Wen-Ling
    • BMB Reports
    • /
    • 제42권9호
    • /
    • pp.593-598
    • /
    • 2009
  • Cell cycle progression is regulated by both transcriptional and post-transcriptional mechanisms. MicroRNAs (miRNAs) emerge as a new class of small non-coding RNA regulators of cell cycle as recent evidence suggests. It is hypothesized that expression of specific miRNAs oscillates orderly along with cell cycle progression. However, the oscillated expression patterns of many candidate miRNAs have yet to be determined. Here, we describe miRNA expression profiling in double-thymidine synchronized HeLa cells as cell cycle progresses. Twenty-five differentially expressed miRNAs were classified into five groups based on their cell cycle-dependent expression patterns. The cyclic expression of six miRNAs (miR-221, let-7a, miR-21, miR-34a, miR-24, miR-376b) was validated by real-time quantitative RT-PCR (qRT-PCR). These results suggest that specific miRNAs, along with other key factors are required for maintaining and regulating proper cell cycle progression. The study deepens our understanding on cell cycle regulation.

Aspergillus fumigatus-derived demethoxyfumitremorgin C inhibits proliferation of PC3 human prostate cancer cells through p53/p21-dependent G1 arrest and apoptosis induction

  • Kim, Young-Sang;Park, Sun Joo
    • Fisheries and Aquatic Sciences
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2021
  • Human prostate cancer is the second most frequently diagnosed cancer worldwide, and its incidence rate continues to increase. Advanced prostate cancer is more difficult to treat than early forms due to its chemotherapy resistance. There is need for more effective agents that can inhibit the progression of advanced prostate cancer. Demethoxyfumitremorgin C (DMFTC) was isolated from the fermentation extract of the marine fungus Aspergillus fumigatus. Antiproliferative activity of DMFTC against human prostate cancer PC3 cells was examined through cell cycle analysis by flow cytometry, the fluorescent nuclear imaging analysis with propidium iodide (PI), and proteins expression related to cell cycle arrest and apoptosis were investigated via Western blotting. DMFTC inhibited PC3 cells growth through G1 phase cell cycle arrest and apoptosis induction. It activated the tumor suppressor p53 and the Cdk inhibitor p21, which regulate the cell progression into the G1 phase. Additionally, PI-positive late apoptotic non-viable cells were increased and the expression levels of the G1-positive downstream regulators cyclin D, cyclin E, Cdk2, and Cdk4 were decreased by DMFTC treatment. These results suggest that DMFTC induces G1 arrest and apoptosis induction through regulation of p53/p21-dependent cyclin-Cdk complexes, and it may be a useful therapeutic agent for the treatment of human advanced prostate cancer.

Antitumor effects of ophiopogonin D on oral squamous cell carcinoma

  • Nguyen Thi Kieu Trang;Vu Phuong Dong;Hoon Yoo
    • International Journal of Oral Biology
    • /
    • 제49권2호
    • /
    • pp.42-47
    • /
    • 2024
  • Ophiopogonin D (OPD) is a steroidal glycoside derived from Ophiopogon japonicus, a traditional Chinese medicine with diverse biological activities, including antithrombosis, anti-inflammation, and antitussive effects. To investigate the cellular effects and mechanisms of OPD on oral squamous cell carcinoma, cell viability was explored, and the effects of OPD on cell cycle regulators, apoptotic marker proteins, and key proteins involved in metastasis and signaling pathways were examined by MTT assay and Western blotting in YD38 cells. OPD strongly inhibited cell proliferation and induced caspase-dependent apoptosis of YD38 cells by suppressing the cell cycle and activating caspase-3 and poly ADP ribose polymerase. Additionally, OPD suppressed the expression of vital proteins regulating metastasis and proliferation within the integrin/matrix metalloproteinases/FAK and AKT/PI3K/mTor pathways. Thus, OPD can be a potential treatment candidate for gingival cancer.