• 제목/요약/키워드: cell cycle regulation

검색결과 491건 처리시간 0.054초

Growth Inhibitory Activity of Honokiol through Cell-cycle Arrest, Apoptosis and Suppression of Akt/mTOR Signaling in Human Hepatocellular Carcinoma Cells

  • Hong, Ji-Young;Park, Hyen Joo;Bae, KiHwan;Kang, Sam Sik;Lee, Sang Kook
    • Natural Product Sciences
    • /
    • 제19권2호
    • /
    • pp.155-159
    • /
    • 2013
  • Honokiol, a naturally occurring neolignan mainly found in Magnolia species, has exhibited a potential anti-proliferative activity in human cancer cells. However, the growth inhibitory activity against hepatocellular carcinoma cells and the underlying molecular mechanisms has been poorly determined. The present study was designed to examine the anti-proliferative effect of honokiol in SK-HEP-1 human hepatocellular cancer cells. Honokiol exerted anti-proliferative activity with cell-cycle arrest at the G0/G1 phase and sequential induction of apoptotic cell death. The cell-cycle arrest was well correlated with the down-regulation of checkpoint proteins including cyclin D1, cyclin A, cyclin E, CDK4, PCNA, retinoblastoma protein (Rb), and c-Myc. The increase of sub-G1 peak by the higher concentration of honokiol ($75{\mu}M$) was closely related to the induction of apoptosis, which was evidenced by decreased expression of Bcl-2, Bid, and caspase-9. Hohokiol was also found to attenuate the activation of signaling proteins in the Akt/mTOR and ERK pathways. These findings suggest that the anti-proliferative effect of honokiol was associated in part with the induction of cell-cycle arrest, apoptosis, and dow-nregulation of Akt/mTOR signaling pathways in human hepatocellular cancer cells.

Cellular Effects of Troglitazone on YD15 Tongue Carcinoma Cells

  • Loan, Ta Thi;Yoo, Hoon
    • International Journal of Oral Biology
    • /
    • 제41권3호
    • /
    • pp.113-118
    • /
    • 2016
  • An FDA approved drug for the treatment of type II diabetes, Troglitazone (TRO), a peroxisome proliferator-activated receptor gamma agonist, is withdrawn due to severe idiosyncratic hepatotoxicity. In the search for new applications of TRO, we investigated the cellular effects of TRO on YD15 tongue carcinoma cells. TRO suppressed the growth of YD15 cells in the MTT assay. The inhibition of cell growth was accompanied by the induction of cell cycle arrest at $G_0/G_1$ and apoptosis, which are confirmed by flow cytometry and western blotting. TRO also suppressed the expression of cell cycle proteins such as cyclin D1, cdk2, cdk4, cyclin B1, cdk1(or cdc2), cyclin E1 and cyclin A. The inhibition of cell cycle proteins was coincident with the up-regulation of $p21^{CIP1/WAF1}$ and $p27^{KIP1}$. In addition, TRO induces the activation of caspase-3 and caspase-7, as well as the cleavage of PARP. Further, TRO suppressed the expressions of Bcl-2 without affecting the expressions of Bad and Bax. Overall, our data supports that TRO induces cell cycle arrest and apoptosis on YD15 cells.

Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes

  • Kim, Min Jae;Jung, Bong-Kwang;Cho, Jaeeun;Song, Hyemi;Pyo, Kyung-Ho;Lee, Ji Min;Kim, Min-Kyung;Chai, Jong-Yil
    • Parasites, Hosts and Diseases
    • /
    • 제54권2호
    • /
    • pp.147-154
    • /
    • 2016
  • Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle.

마우스의 대뇌조직에서 방사선에 의한 아포토시스와 세포주기의 조절 (Regulation of Apoptosis and Cell Cycle in Irradiated Mouse Brain)

  • 오원용;송미희;정은지;성진실;서창옥
    • Radiation Oncology Journal
    • /
    • 제19권2호
    • /
    • pp.146-152
    • /
    • 2001
  • 목적 : 마우스 대뇌조직에 방사선이 조사되었을 경우 아포토시스와 세포주기의 조절작용에 어떤 영향을 미치는 지를 연구하고자 하였다. 대상 및 방법 : 8주간 성숙된 C57B1/6J 마우스의 전뇌에 코발트 방사선조사기로 25 Gy의 방사선을 단일 조사하였다. 방사선조사후 1, 2, 4, 8, 24시간 간격으로 마우스를 경추 탈구사시킨 후 뇌조직을 채취하였다. 채취한 뇌조직을 TUNEL 분석법에 의하며 아포토시스 유도 수준을 평가하였으며 Western blotting법을 이용하여 유전자 산물인 p53, Bcl-2, Bax 그리고 세포주기 조절인자인 cyclin Bl, Dl, E, cdk2, cdk4, $p34^{cdc2}$를 분석하였다. 세포주기의 변화는 유세포분석법에 의하여 분석되었다. 결과 : 아포토시스는 방사선조사후 8시간에서 최고치를 보였고 아포토시스 지수는 $24.0{\pm}0.25$ (p<0.05)였다. 세포주기에서 조절인자의 변화는 cyclin D1를 제외하고는 특이하지 않았다. 결론 : 마우스의 전뇌에 방사선을 조사한 결과 아포토시스는 대뇌의 상의하(subependyma)에서 주로 일어났으며 세포주기의 조절인자에는 영향을 미치지 않는 것으로 판명되었다.

  • PDF

Involvement of G1 arrest and caspase-3 activation in apoptosis induced by bovine lactoferricin

  • Yoo, Yung-Choon;Lee, Kyung-Bok
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.325.2-325.2
    • /
    • 2002
  • We investigated the effect of bovine lactoferricin (Lfcin-B) on cell cycle regulation and caspase activation in tumor cells. Treatment with Lfcin-B resulted in the production of intracellular reactive oxygen species (ROS) during apoptosis of THP-1 cells. Biochemical analysis revealed that Lfcin-B-induced apoptosis. the cell cycle arrest and caspase activation were completely abrogated by addition of an antioxidant such as N-acetylcysteine(NAC). (omitted)

  • PDF

목향(木香)과 차전초(車前草)가 위암세포(胃癌細胞)의 활성(活性), 증식(增殖), 자기살해능(自己殺害能) 및 세포주기관련 유전자 발현에 미치는 영향 (The Effects of Saussurea Radix and Plantaginis Herba on Cellular Viability, Proliferation, Apoptosis and Expression of Cell Cycle-related Genes in Gastric Cancer Cells)

  • 오희라;고성규
    • 대한한방종양학회지
    • /
    • 제7권1호
    • /
    • pp.1-18
    • /
    • 2001
  • Objective: This experimental study was carried out to evaluate the effects of Saussurea Radix and Plantaginis Herba on cellular viability, proliferation, apoptosis and expression of the cell cycle-related genes in cultured gastric cancer cells. Method :MTT assay for analysis of cellular toxicity and the effect on suppression of cellular viability, $[^{3}H]$ thymidine incorporation assay for evaluation of the effect on suppression of DNA replication, tryphan blue exclusion assay for measurement of induction of apoptosis and Quantitative RT-PCR for analysis of the effects on expression of cell cycle or apoptosis-related genes were performed. Results: Antitumor activity of Saussurea Radix associated with inhibition of cell cycle progression and promotion of apoptosis caused by transcriptional regulation of p53, p21/Wafl and the other related genes was observed.

  • PDF

Cyclin-Dependent Kinase Inhibitor 2A is a Key Regulator of Cell Cycle Arrest and Senescence in Endothelial Colony-Forming Cells in Moyamoya Disease

  • Seung Ah Choi;Youn Joo Moon;Eun Jung Koh;Ji Hoon Phi;Ji Yeoun Lee;Kyung Hyun Kim;Seung-Ki Kim
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권6호
    • /
    • pp.642-651
    • /
    • 2023
  • Objective : Endothelial colony-forming cells (ECFCs) have been reported to play an important role in the pathogenesis of moyamoya disease (MMD). We have previously observed stagnant growth in MMD ECFCs with functional impairment of tubule formation. We aimed to verify the key regulators and related signaling pathways involved in the functional defects of MMD ECFCs. Methods : ECFCs were cultured from peripheral blood mononuclear cells of healthy volunteers (normal) and MMD patients. Low-density lipoproteins uptake, flow cytometry, high content screening, senescence-associated β-galactosidase, immunofluorescence, cell cycle, tubule formation, microarray, real-time quantitative polymerase chain reaction, small interfering RNA transfection, and western blot analyses were performed. Results : The acquisition of cells that can be cultured for a long time with the characteristics of late ECFCs was significantly lower in the MMD patients than the normal. Importantly, the MMD ECFCs showed decreased cellular proliferation with G1 cell cycle arrest and cellular senescence compared to the normal ECFCs. A pathway enrichment analysis demonstrated that the cell cycle pathway was the major enriched pathway, which is consistent with the results of the functional analysis of ECFCs. Among the genes associated with the cell cycle, cyclin-dependent kinase inhibitor 2A (CDKN2A) showed the highest expression in MMD ECFCs. Knockdown of CDKN2A in MMD ECFCs enhanced proliferation by reducing G1 cell cycle arrest and inhibiting senescence through the regulation of CDK4 and phospho retinoblastoma protein. Conclusion : Our study suggests that CDKN2A plays an important role in the growth retardation of MMD ECFCs by inducing cell cycle arrest and senescence.

핵이식을 이용한 복제송아지 생산에 관한 연구 II. 효율적인 복제수정란 생산을 위한 난자의 활성화, 공여핵의 세포주기조절 및 적정 배양조건 (Studies on the cloning of calves by nuclear transplantation II. Efficient embryo cloning under oocyte activation, cell cycle regulation of donor nuclei and optimal culture conditions)

  • 황우석;노상호;이병천
    • 대한수의학회지
    • /
    • 제37권3호
    • /
    • pp.639-645
    • /
    • 1997
  • The objectives of the present study were improvements in the efficiency of developmental rates to morula and blastocyst stages to produce a large number of genetically identical nuclear transplanted embryos. The oocytes collected from slaughterhouse ovaries were matured 24h in TCM199+10% FBS and exposed to $39^{\circ}C$ or room temperature to allow cytoplasmic maturation and gain activation competence. Donor embryos were treated for 12h with $10{\mu}g/ml$ nocodazole or $0.05{\mu}g/ml$ demicolcine to synchronize the cell cycle stage at 26h after the onset of culture. The blastomeres and recipient oocytes were fused by electrofusion. The cloned embryos were then cultured in various conditions to allow further development. In the treatment of oocyte activation and cell cycle regulation of donor nuclei, the room temperature exposure and nocodazole treatment group had significant effect on the developmental rates to morula/blastocyst(21.7% vs 12.1~16.7%), but had no significant effect on the fusion rates between donor blastomeres and recipient oocytes. The developmental rates of bovine nuclear transplanted embryos appeared to be higher significantly in mTALP medium under 5% $O_2$ condition and in TCM199 with bovine oviduct epithelial cell under 20% $O_2$ condition(22.2%) than other groups. In embryo transfer of nuclear transplanted embryos, there were no significant differences in calving rates between the use of excellent and good grade donor embryos.

  • PDF

Cell Cycle Regulated Expression of Subcloned Chicken H3 Histone Genes and Their 5' Flanking Sequences

  • Son, Seung-Yeol;Tae, Gun-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권4호
    • /
    • pp.274-277
    • /
    • 1994
  • We subcloned two chicken H3 histone genes and transfected them into Rat 3 cell line. One contains 300 bp 5' to its cap site and the other contains 130 bp 5' to its cap site when cloned into plasm ids. Both of them showed 5' phase specific expression of their mRNA about 8 fold higher (during 5' phase) than during Gl phase. This means that only 130 bp 5' to its cap site was enough to confer cell cycle regulated expression of the latter gene. The DNA sequences of their 5' flanking region did not reveal any particular homologies or subtype-specific sequences. The DNA sequence data also showed that even though the protein coding regions of the histone genes have been conserved exceptionally well throughout evolution, their 5' untranslated regions have not been conserved as well.

  • PDF

Mechanism, Function and Regulation of Microtubule-Dependent Microtubule Amplification in Mitosis

  • Zhu, Hui;Fang, Kayleen;Fang, Guowei
    • Molecules and Cells
    • /
    • 제27권1호
    • /
    • pp.1-3
    • /
    • 2009
  • Mitotic spindle mediates the segregation of chromosomes in the cell cycle and the proper function of the spindle is crucial to the high fidelity of chromosome segregation and to the stability of the genome. Nucleation of microtubules (MTs) from centrosomes and chromatin represents two well-characterized pathways essential for the assembly of a dynamic spindle in mitosis. Recently, we identified a third MT nucleation pathway, in which existing MTs in the spindle act as a template to promote the nucleation and polymerization of MTs, thereby efficiently amplifying MTs in the spindle. We will review here our current understanding on the molecular mechanism, the physiological function and the cell-cycle regulation of MT amplification.