• Title/Summary/Keyword: cell culture system

Search Result 945, Processing Time 0.026 seconds

Differentiation of Mesenchymal Stem Cell-like Cell from Feeder Free Cultured Human Embryonic Stem Cells using Direct Induction System (Feeder-free에서 배양된 인간배아줄기세포의 직접분화유도 방법을 이용한 간엽줄기세포로의 분화)

  • Lee, Min-Ji;Lee, Jae-Ho;Kim, Ju-Mi;Shin, Jeong-Min;Park, Soon-Jung;Chung, Sun-Hwa;Lee, Kyung-Il;Chae, Jung-Il;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • Mesenchymal stem cells (MSCs) have the multipotent capacity and this potential can be applied for obtaining valuable cell types which can use for cell therapy on various regenerative diseases. However, insufficient availability of cellular source is the major problem in cell therapy field using adult stem cell sources. Recently, human embryonic stem cells (hESCs) have been highlighted to overcome a limitation of adult cellular sources because they retain unlimited proliferation capacity and pluripotency. To use of hESCs in cell therapy, above all, animal pathogen free culture system and purification of a specific target cell population to avoid teratoma formation are required. In this study, we describe the differentiation of a mesenchymal stem cell-like cells population from feeder-free cultured hESCs(hESC-MSCs) using direct induction system. hESC-MSCs revealed characteristics similar to MSCs derived from bone marrow, and undifferentiated cell markers were extremely low in hESC-MSCs in RT-PCR, immunostaining and FACS analyses. Thus, this study proffer a basis of effective generation of specialized human mesenchymal stem cell types which can use for further clinical applications, from xenofree cultured hESCs using direct induction system.

Effect of Co-Culture with Various Somatic Cells during In Vitro Maturation of Immature Oocytes (미성숙 난자의 체외 성숙 시 다양한 체세포의 공동 배양 효과)

  • Yoon, Junchul David;Kim, Eun-Hye;Hwang, Seon-Ung;Cai, Lian;Hyun, Sang-Hwan
    • Journal of Embryo Transfer
    • /
    • v.29 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • Recent 2 decades, including in vitro maturation (IVM), assisted reproductive technologies (ARTs) achieved noteworthy development. However the efficiency of ARTs with in vitro matured oocytes is still lower than that with in vivo oocytes. To overcome those limitations, many researchers attempted to adapt co-culture system during IVM and consequently maturation efficiency has been increased. The beneficial effects of applying co-culture system is contemplated base on communication and interaction between various somatic cells and oocytes, achievement of paracrine factors, and spatial effects of extracellular matrix (ECM) from somatic cell surface. The understanding of co-culture system can provide some information to narrow the gap between in vitro and in vivo. Here we will review current studies about issues for understanding cu-culture system with various somatic cells to improve in vitro maturation microenvironment and provide bird view and strategies for further studies.

Factors Indicating Culture Status During Cultivation of Spirulina (Arthrospira) platensis

  • Kim, Choong-Jae;Jung, Yun-Ho;Oh, Hee-Mock
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.122-127
    • /
    • 2007
  • Factors indicating culture status of two Spirulina platensis strains were monitored in a batch mode cultivation for 36 days. Changing mode in all factors showed a common turning point, indicating shift of cell or culture status. Mean biomass productivity was highly sustained until day 22, chlorophyll a concentration peaked on day 22, pH value was > 12 on day 22, coil number was abruptly shortened on day 22, and floating activity was sustained at greater than 79% after day 22, indicating that day 22 is a criterion reflecting phase-transfer in cell physiology in a batch culture system. Many of these changes may have been caused by increased pH, suggesting that pH control is essential for mass production of S. platensis. Fluctuations in floating activity were likely induced by the number of cellular gas vacuoles. Consequently, coil number per trichome and floating activity of S. platensis could readily act as simple indicators for determination of culture status or harvesting time of cells.

Effects of a Co-culture with Granulosa Cells on In Vitro Fertilization and Development of Bovine Follicular Ooctyes (과립막세포가 우난포란의 체외수정과 발달에 미치는 영향)

  • 박태균;이상진;박세필;고대환;윤산현;박흠대;정태영;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.13 no.3
    • /
    • pp.171-178
    • /
    • 1989
  • These experiments were carried out to investigate the effect of a co-culture with granulosa cells on in vitro maturation, fertilization and development of bovine follicular oocytes. The bovine ovaries were obtained at a slaughter house and the follicular oocytes were recovered by aspirating the follicular fluid from the visible follicles of diameter 2-6mm. Bovine oocytes were matured in vitro for 24-26 hr and then fertilized in vitro using epididymal spermatozoa capacitated by preincubation for 2-3hr in BO solution containing BSA(5mg/ml) and caffein(25mM). Eight hours after insemination, the oocytes were cultured in a co-culture system with granulosa cells. The rates of maturation of the follicular oocytes cultured in a co-culture system with granulosa cells were 83.1%, the rate of fertilization of the follicular oocytes culture in a co-culture in a co-culture system with granulosa cells were 76.9%, respectively. No significant difference are observed between control and treatment in maturation and fertilization rates. The rates of embryos developed to 2-, 4-, 8-, 16-cell and monula stages after co-cultured with granulosa cells were 65.8, 57.9, 39.5, 34.2 and 34.2%, respectively. The value for 16-and morula stages were significantly higher (P<0.05) than those of the embryos cultured in the basic medium.

  • PDF

The Effect of Intermittent Compressive Loading to Growth of Pre-osteoblast Cells (간헐적인 압축하중이 조골세포주 성장에 미치는 영향)

  • Choi, Sung-Kyu;Park, Jeong-Hun;Lee, Seung-Jae;Lee, In-Hwan;Kang, Sang-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.153-159
    • /
    • 2010
  • Recently, it has been reported that mechanical stimulation takes a role in improving cell growth. Also, became generally known that skeletal system as bone or cartilage tissues take influence of compression loading. In this study, we fabricated a custom-made bioreactor and analyzed that conditions of compressive loading would influence cell growth. To compare the effect of intermittent compressive loading on cell-encapsulated agarose scaffold, we cultured preosteoblast cell (MC3T3-E1 cells) statically and dynamically. And dynamic culture conditions were produced by changing parameters such as the iteration time and interval delay time. Also, cellencapsulated agarose scaffold were subjected to 10 % dynamic compressive strain at 1㎐ frequency for 7 days. After cell culture, cell proliferation was assessed with PI stain assay for fluorescence images and flow cytometry (FACS).

Production of Exo-polysaccharide from Submerged Culture of Grifola frondosa and Its Antioxidant Activity

  • Lee, Keyong-Ho;Yoon, Won-Ho
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1253-1257
    • /
    • 2009
  • Exo-polysaccharide isolated from the culture of Grifola frondosa was modified by sodium periodate ($NaIO_4$) and sodium chlorite ($NaClO_2$) to delete polysaccharide part and phenolic compound, respectively, and was investigated what effect has each part of exo-polysaccharide against 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress in porcine kidney epithelial cells (LLC-PK1). Oxidative stress on LLC-PK1 cell was measured by cell viability, lipid peroxidation, superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) activity. Exposure of LLC-PK1 cells to 1 mM AAPH for 24 hr resulted in significant decrease in cell viability, SOD, and GSH-px action, and significant increase in lipid peroxidation. The treatment of exo-polysaccharide and $NaIO_4$ modified sample protected LLC-PK1 cells from AAPH-induced cell damage such as cell viability, lipid peroxidation, SOD, and GSH-px activity in a dose dependant manner (10, 100, and $500{\mu}g/mL$). However, the treatment of $NaClO_2$ modified sample did not affect for cell viability, lipid peroxidation, SOD, and GSH-px activity. The antioxidant activity of exo-polysaccharide was significantly decreased on AAPH-induced LLC-PK1 cell system when phenolic compound was deleted. The antioxidant activity was significantly correlated with the content of phenolic compound of exo-polysaccharide.

Effect of cell-penetrating peptide-conjugated estrogen-related receptor ${\beta}$ on the development of mouse embryos cultured in vitro

  • Yang, Ning Jie;Seol, Dong-Won;Jo, Junghyun;Jang, Hyun Mee;Yoon, Sook-Young;Lee, Dong Ryul
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Objective: Estrogen related receptor ${\beta}$ (Esrrb) is a member of the orphan nuclear receptors and may regulate the expression of pluripotencyrelated genes, such as Oct4 and Nanog. Therefore, in the present study, we have developed a method for delivering exogenous ESRRB recombinant protein into embryos by using cell-penetrating peptide (CPP) conjugation and have analyzed their effect on embryonic development. Methods: Mouse oocytes and embryos were obtained from superovulated mice. The expression of Oct4 mRNA and the cell number of inner cell mass (ICM) in the in vitro-derived and in vivo-derived blastocysts were first analyzed by real time-reverse transcription-polymerase chain reaction and differential staining. Then 8-cell embryos were cultured in KSOM media with or without $2{\mu}g/mL$ CPP-ESRRB protein for 24 to 48 hours, followed by checking their integration into embryos during in vitro culture by Western blot and immunocytochemistry. Results: Expression of Oct4 and the cell number of ICM were lower in the in vitro-derived blastocysts than in the in vivo-derived ones (p<0.05). In the blastocysts derived from the CPP-ESRRB-treated group, expression of Oct4 was greater than in the non-treated groups (p<0.05). Although no difference in embryonic development was observed between the treated and non-treated groups, the cell number of ICM was greater in the CPP-ESRRB-treated group. Conclusion: Treatment of CPP-ESRRB during cultivation could increase embryos' expression of Oct4 and the formation rate of the ICM in the blastocyst. Additionally, an exogenous delivery system of CPP-conjugated protein would be a useful tool for improving embryo culture systems.

Embryogenic cell suspension culture and plant regeneration in zoysiagrass (Zoysia japonica Steud) (한국들잔디 배아세포의 부유배양과 식물체 재생)

  • Fang, Wenjuan;Han, Liebao;Qi, Chunhui;Li, Deying;Park, Tae-Yun
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.345-352
    • /
    • 2009
  • Zoysiagrass (Zoysia japonica Steud) is a warm season turfgrass species widely used for sports field and golf courses. Many cultivars are propagated through vegetative methods. This study was conducted to develop an optimum culture medium and culture conditions for embryogenic callus induction and plant regeneration, and to establish a cell suspension culture system for use in zoysiagrass breeding and propagation. The results indicated that adding $Cu^{++}$ at 2.5 mg $L^{-1}$ to the induction medium was optimum for callus induction. Increasing the numbers of sub-culture cycles improved the quality of calli. The optimum dosage for cell suspension culture ranged from 2.5 to 10 mL. The embryogenic callus suspension used in this study had a plant regeneration rate of 58%.

Expression of the Antioxidant Enzyme and Apoptosis Genes in In vitro Maturation/In vitro Fertilization Porcine Embryos

  • Jang, H.Y.;Kong, H.S.;Lee, S.S.;Choi, K.D.;Jeon, G.J.;Yang, B.K.;Lee, C.K.;Lee, H.K
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.33-38
    • /
    • 2004
  • This study was aimed at testing the gene expression of antioxidant enzymes and apoptosis genes for in vitro culture in porcine embryos produced by in vitro maturation/in vitro fertilization (IVM/IVF). Pocine preimplantation embryos obtainted from IVM/IVF can be successfully culture in vitro, but they are delayed or stop to develop at specific developmental stage. Many factors such as reactive oxygen species and apoptosis in an IVM/IVF system followed by in vitro culture influence the rate of production of viable blastocysts. Porcine embryos derived from IVM/IVF were cultured in the atmosphere of 5% $CO_2$ and 20% $O_2$ at $38.5^{\circ}C$ in NCSU23 medium. The patterns of gene expression for antioxidant enzymes and apoptosis genes during in vitro culture in pocine IVM/IVF embryos were examined by the modified semi-quantitative single cell reverse transcriptase-polymerase chain reaction (RT-PCR). Porcine embryos produced by in vitro procedures were expressed mRNAs for CuZn-SOD, GAPDH and GPX, whereas transcripts for Mn-SOD and catalase were not detected at any developmental stages. Expression of caspase-3 mRNA was detected at 2 cell, 8 cell 16 cell and blastocyst, but p53 mRNA was not detected at any stages. The fas transcripts was only detected in blastocyst stage. These results suggest that various antioxidant enzymes and apoptosis genes play crucial roles in vitro culture of porcine IVM/IVF embryos.

Effect of Low Temperature Preservation and Cell Density on Metabolic Function in a Bioartificial Live

  • Park, Yueng-Guen;Takehiko Tosha;Satoshi Fujita;Boru Zhu;Hiroo Iwata;Ryu, Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.1
    • /
    • pp.41-46
    • /
    • 2003
  • Difficulties associated with bioartificial liver (BAL) preservation limit not only the commercialization of BAL, but also its clinical trials. In this study, the possibility of cold preservation of BAL cartridges containing porcine hepatocytes was examined at 4$^{\circ}C$. In an in vitro perfusion culture System, BAL cartridges maintained cytochrome P450 metabolic function for at least 50 days. However, all BAL cartridges completely lost their ammonia eliminating ability when stored at 4$^{\circ}C$. We a1so studied the effect of cell density on the maintenance of BAL liver function In a highly differentiated and healthy state. As expected, BALs containing a larger number of hepatocytes demonstrated higher metabolic functions. When metabolic functions were compared per gram of hepatotytes, no large differences were observed between devices containing different densities of hepatocytes. Decreased cell density did not Successfully prolong BAL function. The viability and function of isolated hepatotytes highly depend on the culture conditions, such as cell density, substrata, culture media, and additives to the culture media. Perfusion culture of BAL cartridges at 4$^{\circ}C$ gave a promosing result with respect to the maintenance of P450 activity. However, as indicated by the rapid loss of ammonia metabolic activity, many factors still remain to be optimized for preservation of BAL keeping high metabolic functions for a longer time.