• Title/Summary/Keyword: cell culture model

Search Result 383, Processing Time 0.027 seconds

Design, Fabrication, and Application of a Microfluidic Device for Investigating Physical Stress-Induced Behavior in Yeast and Microalgae

  • Oh, Soojung;Kim, Jangho;Ryu, Hyun Ryul;Lim, Ki-Taek;Chung, Jong Hoon;Jeon, Noo Li
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.244-252
    • /
    • 2014
  • Purpose: The development of an efficient in vitro cell culture device to process various cells would represent a major milestone in biological science and engineering. However, the current conventional macro-scale in vitro cell culture platforms are limited in their capacity for detailed analysis and determination of cellular behavior in complex environments. This paper describes a microfluidic-based culture device that allows accurate control of parameters of physical cues such as pressure. Methods: A microfluidic device, as a model microbioreactor, was designed and fabricated to culture Saccharomyces cerevisiae and Chlamydomonas reinhardtii under various conditions of physical pressure stimulus. This device was compatible with live-cell imaging and allowed quantitative analysis of physical cue-induced behavior in yeast and microalgae. Results: A simple microfluidic-based in vitro cell culture device containing a cell culture channel and an air channel was developed to investigate physical pressure stress-induced behavior in yeasts and microalgae. The shapes of Saccharomyces cerevisiae and Chlamydomonas reinhardtii could be controlled under compressive stress. The lipid production by Chlamydomonas reinhardtii was significantly enhanced by compressive stress in the microfluidic device when compared to cells cultured without compressive stress. Conclusions: This microfluidic-based in vitro cell culture device can be used as a tool for quantitative analysis of cellular behavior under complex physical and chemical conditions.

Differentiation of the Fetal Rat Pulmonary Epithelial Cells in Organotypic Culture (기관형 배양에서 흰쥐 태자 폐상피세포의 분화)

  • 홍혜남;조운복
    • The Korean Journal of Zoology
    • /
    • v.35 no.3
    • /
    • pp.295-307
    • /
    • 1992
  • In order to study the differentiation of the epithelial cells during the development of fetal rat lung tissue, histological changeB in organotypic culture and in vivo were examined. Light microscopy and scanning electron microscopy were used to analvre the histological change in rat lung from the 15th nary of gestation to the 111th nary after birth. In organotypic culture system, the pulmonary epithelial cell differentiation was studied by scanning electron microscopy. The results obtained from this study were as follows. 1. During deveiopment of lung, the glandular stage lasted from the Isth day to the lsth naut of gestation; the canalicular stage from the 17th nay to the 19th naut of gestation; the saccuiar stage from 20th nary to the birth. Alveolar stage was observed at the 3rd nary of postnatal rat lung. 2. In organotvpic culture of fetal rat lung cells organized alveolar-like structures resembling those of in uiuo state were observed on the gelatin matrix. In contrast with in vivo state, fetal lung cells formed group of type ll pneumocytes predominently along the contours of the matrix. These cells have large apical surface, short microvilli and secreted materials which may be sunactant. These results suggested that an orsanotypic culture retaining epithelial- -mesenchvmal relationships is appropriate culture model to study the pulmonary epithelial cell (especially type ll pneumocvte) differentation.

  • PDF

Kinetic Modeling of Submerged Culture of A. blazei with Mixed Carbon Sources of Glucose and Dextrin

  • Na Jeong-Geol;Kim Hyun-Han;Chang Yong-Keun;Lee Sang-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1331-1337
    • /
    • 2006
  • A mathematical model has been proposed for the batch culture of Agaricus blazei with mixed carbon sources of glucose and dextrin. In the proposed model, the metabolism of A. blazei was divided into three parts: cell growth, exopolysaccharides (EPS) production, and another EPS production pathway activated by dextrin hydrolysis. Each pathway was described mathematically and incorporated into the mechanistic model structure. Batch cultures were carried out with six different carbon source compositions. Although parameters were estimated by using the experimental data from the two extreme cases such as glucose only and dextrin only, the model represented well the profiles of glucose, cell mass, and EPS concentrations for all the six different carbon source mixtures, showing a good interpolation capability. Of note, the lag in EPS production could be quite precisely predicted by assuming that the glucose-to-cell mass ratio was the governing factor for EPS production.

Effect of Agitation and Aeration Rate on Nicotiana tabacum Suspension Cell Culture in Bioreactors (Bioreactor를 이용한 담배세포 현탁배양에서 교반형태와 통기량이 미치는 영향)

  • Lee, Sang-Yun;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.534-538
    • /
    • 1999
  • For the optimization of operating conditions for plant cell suspension culture in bioreactors, effects of bioreactor types, various kinds of impellers, and aeration rates were examined using Nicotiana tabacum cells as a model system. Stirred tank bioreactor and airlift bioreactor were used for the comparison of bioreactor type. Growth rates in both bioreactors were lower than in shake flasks. In terms of final cell concentration, stirred tank bioreactor supported a little bit better growth compared to airlift bioreactor. Impeller type did not affect cell growth significantly, but it was apparent that cell size index decreased in the case of using hollowed paddle impeller. When the aeration rate was maintained at 0.3 vvm, cell growth was the best. At above 1.0 vvm, growth inhibition as well a browning was noticed. In addition, it was found that cell size index reduced proportionally to the increased of aeration rate.

  • PDF

Permanent Mycoplasma Removal Removel from Tissue Culture Cells: A Genetic Approach

  • Motr, Gabriele;Preininger, Alexandra;Himmelspach, Michele;Plaimauer, Barbara;Arbesser, Christine;York, Heinz;Dorner, Friedrich;Schlokat, Use
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.2
    • /
    • pp.84-91
    • /
    • 2000
  • Mycopasma contamination of tissue culture cells easily evades detection and, thus, represents a continous therat to cell biologists. In case where infected cell can not simply be replaced, attempts have to be made to eradicate mycoplacma from the tissue culture cells. A variety of anti-microbial agents have been shown to be toxic to mycoplasma strains ; however, cell associated mycoplasma are often protected from antibiotics at concentrations shown to be effective in vitro. Antibiotic concentrations high enough to be lethal to cell as sociated mycoplasmas frequently are also detrimentrations to the host cells, while moderately increased antibiotic levels tolerated by the host cells often lead to only temporary growth suppression and/or to the emergence of mycoplasma strains resistanct even to high concentrations of the antibiotis applied. Hare, a genetic approach for the elimination of mycoplasma from tissue culture cells that overcomes thens limitations is described. By expression of a selection marker conferring resistance to an otherwise toxic agent, Acholeplasma laidlawii infected BHK-21 cells used as the model system were enabled to temporarily tolerate antibiotic concentrations high enough to be lethal to cell associated mycopalsma while leaving the host cells unharmed. Upon successful mycoplasma eradicated, cultvation of the cured host cells in the absence of the selective agent yielded revertant cell clones that had regained susceptibillity to the toxic agent. Cressation of the selection marker expression was shown to result from the loss of the selection marker DNA, which is a consequence of the fact that the stable and permanent integration of foreign DNA in eucaryotic cell chrosomes is highly inefficient. Thus, the cells were cured from mycoplasma yet remained biochemically unaltered.

  • PDF

Prevention of Murine Acquired Immunodeficiency Syndrome (MAIDS) Development by Oriental Herb Extracts

  • Yang, Yun-Hee;Yang, Joo-Sung
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.170-177
    • /
    • 2005
  • Oriental medicinal herb extracts (OHE) showing anticancer activities were investigated for effectiveness as antiviral drugs. Infection of MuLV to cell line resulted in formation of giant syncytia. Number of giant syncytia in culture treated with OHE decreased by 40% compared to that of non-OHE-treated cell culture. To determine OHE effects on progeny release, RT-PCR was performed. In vivo animal studies demonstrated effectiveness of OHE as antiviral drug when administered orally. After OHE administration, viral cytopathic effects decreased. Infected mice showed splenomegaly and over-proliferation of lymphocytes with decreased CD4+ cell counts. These symptoms decreased in OHE-treated mice, indicating OHE maybe useful therapeutics against MuLV/MAIDS as Human Immunodeficiency Virus (HIV)/AIDS animal model. Results show XC plaque assay and in vivo MAIDS model using MuLV are suitable tools for screening anti-retroviral drug candidates.

Kinetic Studies of Lactic Acid Fermentation(Part 4) -Kinetic Stuies on Continuous Cultivation- (유산균발효에 관한 동력학적연구(제4보) -연속배양에 있어서의 동력학적연구-)

  • LEE Keun-Tai;YANG Hyeun-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.179-184
    • /
    • 1982
  • The behavior of continuous flow culture of Lartobacillus bulgricus was investigated by application of Monod's kinetic model. The parameters obtained from Monod's chemostat theory successfully predicted the behavior of the chemostat. Then, it was found that Monod's kinetics were applicable to the growth rate dependence on glucose concentration. Under steady-state condition, the maximum growth rate, saturation constant, and wash out were found to be 0.62/hr, 7.69 g/1, 0.51/hr of continuous culture. And the optimum condition for the highest cell production was 0.41/hr in dilution rate, and at that point the cell production rate was 0.178g/1 hr.

  • PDF

Comparison of cytokine genes related with immune responses in canine macrophages using different culture models after infection with Brucella canis

  • Park, Woo Bin;Kim, Suji;Shim, Soojin;Yoo, Han Sang
    • Journal of Preventive Veterinary Medicine
    • /
    • v.43 no.4
    • /
    • pp.214-220
    • /
    • 2019
  • Although canine brucellosis has been known to be an important re-emerging zoonosis, the pathophysiological mechanisms of Brucella canis infection remains clues to be solved. Different culture models, single and co-culture models, were constructed with canine epithelial cells, D17 and macrophage, DH82 to investigate the induction of immune responses in in vivo B. canis infection. Expression of genes related with induction of immune responses, Th1, Th2 and Th17, was compared in the two different models after the bacterial infection. In this study, expression of cytokine genes, IL-1β, IL-5, IL-6, IL-10, IL-23, and TNF-α was quantified in the DH82 at different time points using RT-qPCR in the two different culture systems after the infection. Cytokine genes related with Th1, IL-1β and TNF-α and Th17, IL-6 and IL-23 were expressed with time-dependent manners in the both systems (p<0.05). However, increase of Th2-related cytokine genes expression was not detectable in the both systems by comparison with control. The expression of Th1 and Th17 related cytokine genes was earlier in single cell culture than those in co-culture model (p<0.05). In general, amounts of the expressed genes were shown higher in single cell model than those in co-culture models. This study indicate that Th1 and Th17-associated immune responses are central to B. canis infection in dogs. In addition, it suggests a specific role of epithelial cells in the B. canis infection in vivo, which should resolved in the further study.

Establishment of in vitro 3-Dimensional Tumor Model for Evaluation of Anticancer Activity Against Human Solid Tumors (항고형암제의 활성평가를 위한 in vitro 삼차원 암세포 배양계의 확립)

  • Lee, Sang-Hak;Lee, Joo-Ho;Kuh, Hyo-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.5
    • /
    • pp.393-399
    • /
    • 2004
  • For the efficient determination of activity against solid tumors, an in vitro tumor model that resembles the condition of in vivo solid tumors, is required. The purpose of this study was to establish a rapid culture method and viability assay for an in vitro 3-dimensional tumor model, multicellular spheroid (MCS). Among 12 human cancer cell lines, a few cell lines including DLD-1 (human colorectal carcinoma cells) formed fully compact MCS which was adequate for in vitro viability assay. DLD-1 MCS showed steady growth reaching $700\;{\mu}m$ diameter after 11 day culture. DLD-1 cells grown as MCS showed significant increase in $G_0/G_1$ phase compared to the monolayer cells (73.9% vs 45.7%), but necrotic regions or apoptotic cells were not observed. The cells cultured as MCS showed resistance to 5-FU (10.3 fold higher $IC_{50}$) compared to monolayers, however, tirapazamine (a hypotoxin) showed similar activity in both culture systems. In summary, MCS may be a valid in vitro model for activity screening of anticancer agents against human solid tumors and also exploitable for studying molecular markers of drug resistance in human solid tumors.

Effect of Glial-neuronal Cell Co-culture on GFAP Expression of Astrocytes (신경세포가 별아교세포의 아교섬유성 산단백질 표현에 미치는 영향)

  • Bae Hyung-Mi;Park Jung-Sun;Yeon Dong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.285-296
    • /
    • 1997
  • Injury to brain transforms resting astrocytes to their reactive form, the hallmark of which is an increase in glial fibrillary acidic protein (GFAP), the major intermediate filament protein of their cell type. The overall glial response after brain injury is referred to as reactive gliosis. Glial-neuronal interaction is important for neuronal migration, neurite outgrowth and axonal guidance during ontogenic development. Although much attention has been given to glial regulation of neuronal development and regeneration, evidences also suggest a neuronal influence on glial cell differentiation, maturation and function. The aim of the present study was to analyze the effects of glial-hippocampal neuronal co-culture on GFAP expression in the co-cultured astrocytes. The following antibodies were used for double immunostaining chemistry; mouse monoclonal antibodies for confirm neuronal cells, rabbit anti GFAP antibodies for confirm astrocytes. Primary cultured astrocytes showed the typical flat polygonal morphology in culture and expressed strong GFAP and vimentin. Co-cultured hippocampal neurons on astrocytes had phase bright cell body and well branched neurites. About half of co-cultured astrocytes expressed negative or weak GFAP and vimentin. After 2 hour glutamate (0.5 mM) exposure of glial-neuronal co-culture, neuronal cells lost their neurites and most of astrocytes expressed strong CFAE and vimentin. In Western blot analysis, total GFAP and vimentin contents in co-cultured astrocytes were lower than those of primary cultured astrocytes. After glutamate exposure of glial-neuronal co-culture, GFAP and vimentin contents in astrocytes were increased to the level of primary cultured astrocytes. These results suggest that neuronal cell decrease GFAP expression in co-cultured astrocytes and hippocampal neuronal-glial co-culture can be used as a reactive gliosis model in vitro for studying GFAP expression of astrocytes.

  • PDF