• Title/Summary/Keyword: cell binding domain

Search Result 257, Processing Time 0.028 seconds

Characterization of αX I-Domain Binding to Receptors for Advanced Glycation End Products (RAGE)

  • Buyannemekh, Dolgorsuren;Nham, Sang-Uk
    • Molecules and Cells
    • /
    • v.40 no.5
    • /
    • pp.355-362
    • /
    • 2017
  • The ${\beta}2$ integrins are cell surface transmembrane proteins regulating leukocyte functions, such as adhesion and migration. Two members of ${\beta}2$ integrin, ${\alpha}M{\beta}2$ and ${\alpha}X{\beta}2$, share the leukocyte distribution profile and integrin ${\alpha}X{\beta}2$ is involved in antigen presentation in dendritic cells and transendothelial migration of monocytes and macrophages to atherosclerotic lesions. ${\underline{R}}eceptor$ for ${\underline{a}}dvanced$ ${\underline{g}}lycation$ ${\underline{e}}nd$ ${\underline{p}}roducts$ (RAGE), a member of cell adhesion molecules, plays an important role in chronic inflammation and atherosclerosis. Although RAGE and ${\alpha}X{\beta}2$ play an important role in inflammatory response and the pathogenesis of atherosclerosis, the nature of their interaction and structure involved in the binding remain poorly defined. In this study, using I-domain as a ligand binding motif of ${\alpha}X{\beta}2$, we characterize the binding nature and the interacting moieties of ${\alpha}X$ I-domain and RAGE. Their binding requires divalent cations ($Mg^{2+}$ and $Mn^{2+}$) and shows an affinity on the sub-micro molar level: the dissociation constant of ${\alpha}X$ I-domains binding to RAGE being $0.49{\mu}M$. Furthermore, the ${\alpha}X$ I-domains recognize the V-domain, but not the C1 and C2-domains of RAGE. The acidic amino acid substitutions on the ligand binding site of ${\alpha}X$ I-domain significantly reduce the I-domain binding activity to soluble RAGE and the alanine substitutions of basic amino acids on the flat surface of the V-domain prevent the V-domain binding to ${\alpha}X$ I-domain. In conclusion, the main mechanism of ${\alpha}X$ I-domain binding to RAGE is a charge interaction, in which the acidic moieties of ${\alpha}X$ I-domains, including E244, and D249, recognize the basic residues on the RAGE V-domain encompassing K39, K43, K44, R104, and K107.

Detection of Bacillus Cereus Using Bioluminescence Assay with Cell Wall-binding Domain Conjugated Magnetic Nanoparticles

  • Park, Chanyong;Kong, Minsuk;Lee, Ju-Hoon;Ryu, Sangryeol;Park, Sungsu
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.287-293
    • /
    • 2018
  • Bacillus cereus can cause blood infections (i.e., sepsis). Its early detection is very important for treating patients. However, an antibody with high binding affinity to B. cereus is not currently available. Bacteriophage cell wall-binding domain (CBD) has strong and specific binding affinity to B. cereus. Here, we report the improvement in the sensitivity of an ATP bioluminescence assay for B. cereus detection using CBD-conjugated magnetic nanoparticles (CBD-MNPs). The assay was able to detect as few as 10 colony forming units (CFU) per mL and $10^3CFU\;per\;mL$ in buffer and blood. CBD-MNPs did not show any cross-reactivity with other microorganisms. These results demonstrate the feasibility of the ATP assay for the detection of B. cereus.

Effects of Co-Expression of Liver X Receptor β-Ligand Binding Domain with its Partner, Retinoid X Receptor α-Ligand Binding Domain, on their Solubility and Biological Activity in Escherichia coli

  • Kang, Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.247-254
    • /
    • 2015
  • In this presentation, I describe the expression and purification of the recombinant liver X receptor β-ligand binding domain proteins in E. coli using a commercially available double cistronic vector, pACYCDuet-1, to express the receptor heterodimer in a single cell as the soluble form. I describe here the expression and characterization of a biologically active heterodimer composed of the liver X receptor β-ligand binding domain and retinoid X receptor α-ligand binding domain. Although many of these proteins were previously seen to be produced in E. coli as insoluble aggregates or "inclusion bodies", I show here that as a form of heterodimer they can be made in soluble forms that are biologically active. This suggests that co-expression of the liver X receptor β-ligand binding domain with its binding partner improves the solubility of the complex and probably assists in their correct folding, thereby functioning as a type of molecular chaperone.

Structure of the Starch-Binding Domain of Bacillus cereus $\beta-Amylase$

  • Yoon, Hye-Jin;Akira, Hirata;Motoyasu, Adachi;Atsushi, Sekine;Shigeru, Utsumi;Bunzo, Mikami
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.619-623
    • /
    • 1999
  • The C-terminal starch-binding domain of Bacillus cereus $\beta$-amylase expressed in Escherichia coli was purified and crystallized using the vapor diffusion method. The crystals obtained belong to a space group of $P3_2$ 21 with cell dimensions, a=b=60.20${\AA},\; c=64.92{\AA},\; and \; \gamma = 120^{\circ}$ The structure was determined by the molecular replacement method and refined at 1.95 ${\AA}$, with R-factors of 0.181. The final model of the starch-binding domain comprised 99 amino acid residues and 108 water molecules. The starch-binding domain had a secondary structure of two 4-stranded antiparallel p-sheets similar to domain E of cyclodextrin glucanotransferase and the C-terminal starch-binding domain of glucoamylase. A comparison of the structures of these starch-binding domains revealed that the separated starch-binding domain of Bacillus cereus $\beta-Amylase$had only one starch-binding site (site 1) in contrast to two sites (site 1 and site 2) reported in the domains of cyclodextrin glucanotransferase and glucoamylase.

  • PDF

Identification of the Calcium Binding Sites in Translationally Controlled Tumor Protein

  • Kim, Moon-Hee;Jung, Yoon-Wha;Lee, Kyung-Lim;Kim, Choon-Mi
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.633-636
    • /
    • 2000
  • Translationally controlled tumor protein (TCTP), also known as IgE-dependent histamine-releasing factor, is a growth-related tumor protein. Although the primary sequence of rat TCTP does not reveal any recognizable $Ca^{2+}$ -binding motif, previous studies have demonstrated that rat TCTP consisting of 172 amino acids is a $Ca^{2+}$ -binding protein. However. the region of TCTP required for $Ca^{2+}$ interaction has not been mapped to the molecule. Here, we reported that the $Ca^{2+}$ binding region of TCTP which was mapped by using a combination of deletion constructs of rat TCTP and $^{45}Ca^{2+}$-overlay assay. was confined to amino acid residues 81-112. This binding domain did not show any peculiar loop of calcium- binding motif such as CaLB domain and EF hand motif and it seems to be constituted of random coil regions neighboring the a helix. Thus, our data confirm that TCTP is a novel family of $Ca^{2+}$ -binding protein.

  • PDF

Grim Stimulates Diap1 Poly-Ubiquitination by Binding to UbcD1

  • Yoo, Soon Ji
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.446-451
    • /
    • 2005
  • Diap1 is an essential Drosophila cell death regulator that binds to caspases and inhibits their activity. Reaper, Grim and Hid each antagonize Diap1 by binding to its BIR domain, activating the caspases and eventually causing cell death. Reaper and Hid induce cell death in a Ring-dependent manner by stimulating Diap1 auto-ubiquitination and degradation. It was not clear that how Grim causes the ubiquitination and degradation of Diap1 in Grim-dependent cell death. We found that Grim stimulates poly-ubiquitination of Diap1 in the presence of UbcD1 and that it binds to UbcD1 in a GST pull-down assay, so presumably promoting Diap1 degradation. The possibility that dBruce is another E2 interacting with Diap1 was examined. The UBC domain of dBruce slightly stimulated poly-ubiquitination of Diap1 in Drosophila extracts but not in the reconstitution assay. However Grim did not stimulate Diap1 poly-ubiquitination in the presence of the UBC domain of dBruce. Taken together, these results suggest that Grim stimulates the poly-ubiquitination and presumably degradation of Diap1 in a novel way by binding to UbcD1 but not to the UBC domain of dBruce as an E2.

Functional characterization of the distal long arm of laminin: Characterization of Cell- and heparin binding activities

  • Sung, Uhna;O′Rear, Julian J.;Yurchenco, Peter D.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.107-113
    • /
    • 1995
  • Basement membrane laminin is a multidomain glycoprotein that interacts with itself, heparin and cells. The distal long arm plays major cell and heparin interactive roles. The long arm consists of three subunits (A, B1, B2) joined in a coiled-coil rod attached to a terminal A chain globule (G). The globule is in turn subdivided into five subdomains (Gl-5). In order to analyze the functions of this region, recombinant G domains (rG, rAiG, rG5, rGΔ2980-3028) were expressed in Sf9 insect cells using a baculovirus expression vector. A hybrid molecule (B-rAiG), consisting of recombinant A chain(rAiG) and the authentic B chains (E8-B)was assembled in vitro. The intercalation of rAiG into E8-B chains suppressed a heparin binding activity identified in subdomain Gl-2. By the peptide napping and ligand blotting, the relative affinity of each subeomain to heparin was assigned as Gl> G2= G4> G5> G3, such that G1 bound strongly and G3 not at all. The active heparin binding site of G domain in intact laminin appears to be located in G4 and proximal G5. Cell binding was examined using fibrosarcoma Cells. Cells adhered to E8, B-rAiG, rAiG and rG, did not bind on denatured substrates, poorly bound to the mixture of E8-B and rG. Anti-${\alpha}$6 and anti-${\beta}$1 integrin subunit separately blocked cell adhesion on E8 and B-rAiG, but not on rAiG. Heparin inhibited cell adhesion on rAiG, partially on B-rAiG, and not on E8. In conclusion, 1) There are active and cryptic cell and heparin binding activities in G domain. 2) Triple-helix assembly inactivates cell and heparin binding activities and restores u6131 dependent cell binding activities.

  • PDF

N-terminal GNBP homology domain of Gram-negative binding protein 3 functions as a beta-1,3-glucan binding motif in Tenebrio molitor

  • Lee, Han-Na;Kwon, Hyun-Mi;Park, Ji-Won;Kurokawa, Kenji;Lee, Bok-Luel
    • BMB Reports
    • /
    • v.42 no.8
    • /
    • pp.506-510
    • /
    • 2009
  • The Toll signalling pathway in invertebrates is responsible for defense against Gram-positive bacteria and fungi, leading to the expression of antimicrobial peptides via NF-$\kappa$B-like transcription factors. Gram-negative binding protein 3 (GNBP3) detects beta-1,3-glucan, a fungal cell wall component, and activates a three step serine protease cascade for activation of the Toll signalling pathway. Here, we showed that the recombinant N-terminal domain of Tenebrio molitor GNBP3 bound to beta-1,3-glucan, but did not activate down-stream serine protease cascade in vitro. Reversely, the N-terminal domain blocked GNBP3-mediated serine protease cascade activation in vitro and also inhibited beta-1,3-glucan-mediated antimicrobial peptide induction in Tenebrio molitor larvae. These results suggest that the N-terminal GNBP homology domain of GNBP3 functions as a beta-1,3-glucan binding domain and the C-terminal domain of GNBP3 may be required for the recruitment of immediate down-stream serine protease zymogen during Toll signalling pathway activation.

A Novel Heterozygous Mutation (F252Y) in Exon 7 of the IRF6 Gene is Associated with Oral Squamous Cell Carcinomas

  • Melath, Anil;Santhakumar, Gopi Krishnan;Madhavannair, Shyam Sunder;Nedumgottil, Binoy Mathews;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6803-6806
    • /
    • 2013
  • Background: Interferon regulatory factor 6 (IRF6) is a transcription factor with distinct and conserved DNA and protein binding domains. Mutations within the protein binding domain have been significantly observed in subjects with orofacial cleft relative to healthy controls. In addition, recent studies have identified loss of expression of IRF6 due to promoter hypermethylation in cutaneous squamous cell carcinomas. Since mutational events occurring within the conserved domains are likely to affect the function of a protein, we investigated whether regions within the IRF6 gene that encodes for the conserved protein binding domain carried mutations in oral squamous cell carcinoma (OSCC). Materials and Methods: Total chromosomal DNA extracted from 32 post surgical OSCC tissue samples were amplified using intronic primers flanking the exon 7 of IRF6 gene, which encodes for the major region of protein binding domain. The PCR amplicons from all the samples were subsequently resolved in a 1.2% agarose gel, purified and subjected to direct sequencing to screen for mutations. Results: Sequencing analysis resulted in the identification of a mutation within exon 7 of IRF6 that occurred in heterozygous condition in 9% (3/32) of OSCC samples. The wild type codon TTC at position 252 coding for phenylalanine was found to be mutated to TAC that coded for tyrosine (F252Y). Conclusions: The present study identified for the first time a novel mutation within the conserved protein binding domain of IRF6 gene in tissue samples of subjects with OSCC.

Development of a Magnetic Bead-Based Method for Specific Detection of Enterococcus faecalis Using C-Terminal Domain of ECP3 Phage Endolysin

  • Yoon-Jung Choi;Shukho Kim;Jungmin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.964-972
    • /
    • 2023
  • Bacteriophage endolysins are peptidoglycan hydrolases composed of cell binding domain (CBD) and an enzymatically active domain. A phage endolysin CBD can be used for detecting bacteria owing to its high specificity and sensitivity toward the bacterial cell wall. We aimed to develop a method for detection of Enterococcus faecalis using an endolysin CBD. The gene encoding the CBD of ECP3 phage endolysin was cloned into the Escherichia coli expression vector pET21a. A recombinant protein with a C-terminal 6-His-tag (CBD) was expressed and purified using a His-trap column. CBD was adsorbed onto epoxy magnetic beads (eMBs). The bacterial species specificity and sensitivity of bacterial binding to CBD-eMB complexes were determined using the bacterial colony counting from the magnetic separations after the binding reaction between bacteria and CBD-eMB complexes. E. faecalis could bind to CBD-eMB complexes, but other bacteria (such as Enterococcus faecium, Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii, Streptococcus mutans, and Porphyromonas gingivalis) could not. E. faecalis cells were fixed onto CBD-eMB complexes within 1 h, and >78% of viable E. faecalis cells were recovered. The E. faecalis recovery ratio was not affected by the other bacterial species. The detection limit of the CBD-eMB complex for E. faecalis was >17 CFU/ml. We developed a simple method for the specific detection of E. faecalis using bacteriophage endolysin CBD and MBs. This is the first study to determine that the C-terminal region of ECP3 phage endolysin is a highly specific binding site for E. faecalis among other bacterial species.