Grim Stimulates Diap1 Poly-Ubiquitination by Binding to UbcD1

  • Yoo, Soon Ji (Department of Biology, Kyung Hee University)
  • Received : 2005.10.21
  • Accepted : 2005.10.24
  • Published : 2005.12.31

Abstract

Diap1 is an essential Drosophila cell death regulator that binds to caspases and inhibits their activity. Reaper, Grim and Hid each antagonize Diap1 by binding to its BIR domain, activating the caspases and eventually causing cell death. Reaper and Hid induce cell death in a Ring-dependent manner by stimulating Diap1 auto-ubiquitination and degradation. It was not clear that how Grim causes the ubiquitination and degradation of Diap1 in Grim-dependent cell death. We found that Grim stimulates poly-ubiquitination of Diap1 in the presence of UbcD1 and that it binds to UbcD1 in a GST pull-down assay, so presumably promoting Diap1 degradation. The possibility that dBruce is another E2 interacting with Diap1 was examined. The UBC domain of dBruce slightly stimulated poly-ubiquitination of Diap1 in Drosophila extracts but not in the reconstitution assay. However Grim did not stimulate Diap1 poly-ubiquitination in the presence of the UBC domain of dBruce. Taken together, these results suggest that Grim stimulates the poly-ubiquitination and presumably degradation of Diap1 in a novel way by binding to UbcD1 but not to the UBC domain of dBruce as an E2.

Keywords

Acknowledgement

Supported by : Kyung Hee University

References

  1. Arama, E., Agapite, J., and Steller, H. (2003) Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev. Cell 4, 687-697 https://doi.org/10.1016/S1534-5807(03)00120-5
  2. Bartke, T., Pohl, C., Pyrowolakis, G., and Jentsch, S. (2004) Dual role of BRUCE as an antiapoptotic IAP and a chimeric E2/E3 ubiquitin ligase. Mol. Cell 14, 801-811 https://doi.org/10.1016/j.molcel.2004.05.018
  3. Claveria, C., Albar, J. P., Serrano, A., Buesa, J. M., Barvero, J. L., et al. (1998) Drosophila grim induces apoptosis in mammalian cells. EMBO J. 17, 7199-7208 https://doi.org/10.1093/emboj/17.24.7199
  4. Ditzel, M., Wilson, R., Tenev, T., Zachariou, A., Paul, A., et al. (2003) Degradation of Diap1 by the N-end rule pathway is essential for regulating apoptosis. Nat. Cell Biol. 5, 467-473 https://doi.org/10.1038/ncb984
  5. Dohi, T., Okada, K., Xia, F., Wilford, C. E., Samuel, T., et al. (2004) An IAP-IAP complex inhibits apoptosis. J. Biol. Chem. 279, 34087-34090 https://doi.org/10.1074/jbc.C400236200
  6. Hao, Y., Skine, K., Kawabata, A., Nakamura, H., Ishioka, T., et al. (2004) Apollon ubiquitinates Smac and caspase-9, and has an essential cytoprotection function. Nat. Cell Biol. 6, 849-860 https://doi.org/10.1038/ncb1159
  7. Hashizume, R., Fukuda, M., Maeda, I., Nishkawa, H., Oyake, D., et al. (2001) The RING heterodimer BRCA1-BARD1 is an ubiquitin ligase inactivated by a breast cancer-derived mutation. J. Biol. Chem. 276, 14537-14540 https://doi.org/10.1074/jbc.C000881200
  8. Hauser, H.-P., Bardroff, M., Pyrowolakis, G., and Jentsch, S. (1998) A giant ubiquitin-conjugating enzyme related to IAP apoptosis inhibitors. J. Cell. Biol. 141, 1415-1422 https://doi.org/10.1083/jcb.141.6.1415
  9. Hay, B. A., Wassarman, D. A., and Rubin, G. M. (1995) Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83, 1253-1262 https://doi.org/10.1016/0092-8674(95)90150-7
  10. Hengartner, M. O. (2000) The biochemistry of apoptosis. Nature 407, 770-776 https://doi.org/10.1038/35037710
  11. Holley, C. L., Olson, M. R., Colon-Ramos, D. A., and Kornbluth, S. (2002) Reaper eliminates IAP proteins through stimulated IAP degradation and generalized translational inhibition. Nat. Cell Biol. 4, 439-444 https://doi.org/10.1038/ncb798
  12. Lasi, S., Mazzon, I., and White, K. (2000) Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics 154, 669-678
  13. Liu, M.-L., Liu, M.-J., Kim, J.-M., Kim, H.-J., Kim, J.-H., et al. (2005) htra2 interacts with A$\beta$ peptides but does not directly alter its production or degradation. Mol. Cells 20, 83-89
  14. McCarthy, J. V. and Dixit, V. M. (1998) Apoptosis induced by Drosophila reaper and grim in a human system. Attenuation by inhibitor of apoptosis proteins (cIAPs). J. Biol. Chem. 273, 24009-24015 https://doi.org/10.1074/jbc.273.37.24009
  15. Nagata, S. (1997) Apoptosis by death factor. Cell 88, 355-365 https://doi.org/10.1016/S0092-8674(00)81874-7
  16. Olson, M. R., Holley, C. L., Yoo, S. J., Huh, J. R., Hay, B. A., et al. (2003) Reaper is regulated by IAP-mediated ubiquitination. J. Biol. Chem. 278, 4028-4034 https://doi.org/10.1074/jbc.M209734200
  17. Reed, J. C. (1999) Dysregulation of apoptosis in cancer. J. Clin. Oncol. 17, 2941-2953
  18. Ryoo, H. D., Bergmann, A., Gonen, H., Ciechanover, A., and Steller, H. (2002) Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nat. Cell Biol. 4, 432-438 https://doi.org/10.1038/ncb795
  19. Sekine, K., Hao, Y., Suzuki, Y., Takahashi, R., Tsuruo, T., et al. (2005) HtrA2 cleaves Apollon and induces cell death by IAPbinding motif in Apollon-deficient cells. Biochem. Biophys. Res. Commun. 330, 279-285 https://doi.org/10.1016/j.bbrc.2005.02.165
  20. Shi, Y. (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9, 459-470 https://doi.org/10.1016/S1097-2765(02)00482-3
  21. Silke, J., Hawkins, C. J., Ekert, P. G., Chew, J., Day, C. L., et al. (2002) The anti-apoptotic activity of XIAP is retained upon mutation of both the caspase 3- and caspase 9- interacting sites. J. Cell Biol. 157, 115-124 https://doi.org/10.1083/jcb.200108085
  22. Silke, J., Kratina, T., Ekert, P. G., Pakusch, M., and Vaux, D. L. (2004) Unlike Diablo/smac, Grim promotes global ubiquitination and specific degradation of X chromosome-linked inhibitor of apoptosis (XIAP) and neither cause apoptosis. J. Biol. Chem. 279, 4313-4321
  23. Vaux, D. L. and Silke, J. (2005) IAPs, RINGs and ubiquitylation. Nat. Rev. Mol. Cell. Biol. 6, 287-297 https://doi.org/10.1038/nrm1621
  24. Vernooy, S. Y., Chow, V., Su, J., Verbrugghe, K., Yang, J., et al. (2002) Drosophila Bruce can potently suppress Rpr- and Grim-dependent but not Hid-dependent cell death. Curr. Biol. 12, 1164-1168 https://doi.org/10.1016/S0960-9822(02)00935-1
  25. Wang, S. L., Hawkins, C. J., Yoo, S. J., Muller, H. A., and Hay, B. A. (1999) The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98, 453-463 https://doi.org/10.1016/S0092-8674(00)81974-1
  26. White, K., Grether, M. E., Abrams, J. M., Young, L., Farrell, K., et al. (1994) Genetic control of programmed cell death in Drosophila. Science 264, 677-683 https://doi.org/10.1126/science.8171319
  27. Wu, J.-W., Cocina, A. E., Chai, J., Hay, B. A., and Shi, Y. (2001) Structural analysis of a functional DIAP1 fragment bound to Grim and Hid peptides. Mol. Cell 8, 95-104 https://doi.org/10.1016/S1097-2765(01)00282-9
  28. Wyllie, A. H., Kerr, J. F., and Currie, A. R. (1980) Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251-306 https://doi.org/10.1016/S0074-7696(08)62312-8
  29. Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M., and Ashwell, J. D. (2000) Ubiquitination protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874-877 https://doi.org/10.1126/science.288.5467.874
  30. Yoo, S. J., Huh, J. R., Muro, I., Yu, H., Wang, S. L., et al. (2002) Hid, Reaper and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat. Cell Biol. 4, 414-424
  31. Yuan, J., Lipinski, M., and Degterev, A. (2003) Diversity in the mechanisms of neuronal cell death. Neuron 40, 401-413 https://doi.org/10.1016/S0896-6273(03)00601-9
  32. Zimmermann, K. C., Ricci, J.-E., Droin, N. M., and Green, D. R. (2002) The role of ARK in stress-induced apoptosis in Drosophila cells. J. Cell Biol. 156, 1077-1087 https://doi.org/10.1083/jcb.20112068