• Title/Summary/Keyword: cell apoptosis

Search Result 4,321, Processing Time 0.034 seconds

The effect of β-sitosterol proliferation and apoptosis in human uterine leiomyoma cells (계혈등(鷄血藤)의 Beta-sitosterol 성분이 자궁근종세포의 증식억제와 세포자멸사의 유도에 미치는 영향)

  • Park, Youngsun;Baek, Seunghee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.18 no.1
    • /
    • pp.181-191
    • /
    • 2005
  • Purpose : ${\beta}$-sitosterol is kind of phytosterols or plant which are structurally similar to cholesterol. This study was aimed to investigate the inhibitory effect of the ${\beta}$-sitosterol on the proliferation of human uterine leiomyoma cells and the expression of gene related the mechanism of cell apoptosis. Methods : We counted the number of death cells treated with indicated time of the ${\beta}$-sitosterol and investigated cell death rate by cell count assay. Furthermore, flow cytometry analysis and DNA fragmentation assay were used to dissect between necrosis and apoptosis. and then we observed the differential gene expression by western blot analysis. Results : 1) The inhibitory effect on the growth of uterine leiomyoma cell treated with the ${\beta}$-sitosterol $16{\mu}M$ was increased in a time dependent. 2) The result of flow cytometry analysis, subG1 phase arrest related cell apoptosis was investigated 16.97% in uterine leiomyoma cell treated with the ${\beta}$-sitosterol $16{\mu}M$ and showed the fashion of proportional time dependent. 3) The gene expression of p27, p21 related cell cycle was increased according to increasing time interval but cyclin E-CDK2 complex was decreased expression. 4) The character of apoptosis, DNA fragmentation was significantly observed on the time dependent. 5) The expression of pro-caspase 3 and PARP were decreased dependent on treatment with time dependent. Conclusion : This study showed that the ${\beta}$-sitosterol have the inhibitory effect on the proliferation of human uterine leiomyoma cell and the effect was related with apoptosis.

  • PDF

Apoptosis-inducing Effect of Fructus Trichosanthis in HL-60 Leukemic Cells (백혈병 세포주 HL-60에서 과루실 세포고사 유도 효과)

  • Kwon Kang Beom;Kim Eun Kyung;Han Mi Jeong;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.4
    • /
    • pp.903-907
    • /
    • 2005
  • Many naturally occurring plant extracts are studied for their beneficial effects for health and particularly on cancer. Apoptosis, or programmed cell death, occurs in both normal and pathological conditions, including cancer Dysregulation of apoptosis allows transformed cells to continually and uninhibitedly enter the cell cycle, thus perpetuating the sequence of mutation, genomic instability and, finally, oncogenesis. To investigate the apoptosis-inducing effect of the extract of Fructus Trichosanthis (EFT) on leukemic HL-60 cells and its mechanism, HL-60 cells in vitro in culture medium were given different doses of the extract. The inhibitory rate of cells were measured by microculture tetrazolium assay, cell apoptotic rate was detected by flow cytometry, morphology of cell apoptosis was observed by DAPI fluorescence staining, and the activations of caspases and PARP were detected using Western blotting analysis. The extract could activate the caspase-3 and caspase-8, induce PARP cleavage, inhibit growth of HL-60 cells, and cause apoptosis significantly The suppression was in dose-dependent manner. Marked morphological changes of cell apoptosis including condensation of chromatin and nuclear fragmentation were observed clearly by DAPI fluorescence staining especially. These results will provide strong laboratory evidence of EFT for clinical treatment of acute leukemia.

Alteration of Apoptosis during Differentiation in Human Dental Pulp-Derived Mesenchymal Stem Cell

  • Lee, Hyeon-Jeong;Park, Byung-Joon;Jeon, Ryoung-Hoon;Jang, Si-Jung;Son, Young-Bum;Lee, Sung-Lim;Rho, Gyu-Jin;Kim, Seung-Joon;Lee, Won-Jae
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.2-9
    • /
    • 2019
  • Because mesenchymal stem cells (MSCs) maintain distinct capacities with respect to self-renewal, differentiation ability and immunomodulatory function, they have been highly considered as the therapeutic agents for cell-based clinical application. Of particular, differentiation condition alters characteristics of MSCs, including cellular morphology, expression of gene/protein and cell surface molecule, immunological property and apoptosis. However, the previous results for differentiation-related apoptosis in MSCs have still remained controversial due to varied outcomes. Therefore, the present study aimed to disclose periodical alterations of pro- and anti-apoptosis in MSCs under differentiation inductions. The human dental pulp-derived MSCs (DP-MSCs) were differentiated into adipocytes and osteoblasts during early (1 week), middle (2 weeks) and late (3 weeks) stages, and were investigated on their apoptosis-related changes by Annexin V assay, qRT-PCR and western blotting. The ratio of apoptotic cell population was significantly (p < 0.05) elevated during the early to middle stages of differentiations but recovered up to the similar level of undifferentiated state at the late stage of differentiation. In the expression of mRNA and protein, whereas expressions of pro-apoptosis-related makers (BAX and BAK) were not altered in any kind and duration of differentiation inductions, anti-apoptosis marker (BCL2) was significantly (p < 0.05) elevated even at the early stage of differentiations. The recovery of apoptotic cell population at the late stage of differentiation is expected to be associated with the response by elevation of anti-apoptotic molecules. The present study may contribute on understanding for cellular mechanism in differentiation of MSCs and provide background data in clinical application of MSCs in the animal biotechnology to develop effective and safe therapeutic strategy.

Herb medicine Bo-du-san induces caspase dependent apoptosis and cell cycle arrest human gastric cancer cells, SNU-1 (보두산(寶豆散)에 의한 SNU-1 세포의 Apoptosis 유도와 Cell cycle arrest)

  • Yun, Hyun-Joung;Seo, Gyo-Soo;Choi, Jae-Woo;Lee, Hyun-Woo;Heo, Sook-Kyoung;Park, Won-Hwan;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.22 no.2
    • /
    • pp.35-43
    • /
    • 2007
  • Objectives : The purpose of this study was to investigate the effect of Bo-du-san (BOS) on apoptosis in human gastric cancer cells, SNU-l cells. BOS, a drug preparation consisting of two herbs, that is, Crotonis Fructus (Strychni ignatii Semen, bodu in Korean) and Glycyrrhizae Radix (Glycyrrhizae uralensis FISCH, Gamcho in Korean). Methodss : In this study, methanol extract of BOS was examined for cytotoxic activity on human gastric cancer cells, SNU-1 cells, using XTT assay, with an IC50 value was 0.7 mg/ml and 0.3 mg/ml at 24 hrs and 48 hrs, respectively. Apoptosis induction by BDS in SNU-l cells was verified by the induction of DNA fragmentation, cleavage of poly ADP-ribose polymerase (PARP), and activation of caspase-3, -8 and -9. Inhibitors of caspase-3, -8 and -9 (Ac-DEVD-CHO, Z-IETD-FMK and Z-LEHD-FMK) efficiently blocked BOS-induced cell death of SNU-l. Resultss : BOS-induced cell death was via caspase dependent apoptosis. Moreover, treatment of BOS result in the decrease the G1/S cycle regulation proteins (cyclin D1 and E) expression and increase CDK inhibitor proteins (p21 and p27) expression, and increase apoptotic protein, p53 expression. Thus, BOS induces apoptosis in SNU-1 cells via cell cycle arrested in G1 phase. Conclusions : These results indicated that BOS has some potential for use as an anti-cancer agent.

  • PDF

Antitumor Activity of Histone Deacetylase Inhibitor Trichostatin A in Osteosarcoma Cells

  • Cheng, Dong-Dong;Yang, Qing-Cheng;Zhang, Zhi-Chang;Yang, Cui-Xia;Liu, Yi-Wen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1395-1399
    • /
    • 2012
  • Background: Histone deacetylase (HDAC) inhibitors have been reported to induce cell growth arrest, apoptosis and differentiation of tumor cells. The present study aimed to examine the effects of trichostatin A (TSA), one such inhibitor, on the cell cycle, apoptosis and invasiveness of osteosarcoma cells. Methods: MG-63 cells were treated with TSA at various concentrations. Then, cell growth and apoptosis were determined by 3-(4, 5-dimethyl-2-thiazolyl)-2H-tetrazolium bromide (MTT) and TUNEL assays, respectively; cell cycling was assessed by flow cytometry; invasion assays were performed with the transwell Boyden Chamber system. Results: MTT assays revealed that TSA significantly inhibited the growth of MG-63 cells in a concentration and time dependent manner. TSA treated cells demonstrated morphological changes indicative of apoptosis and TUNEL assays revealed increased apoptosis of MG-63 cells after TSA treatment. Flow cytometry showed that TSA arrested the cell cycle in G1/G2 phase and annexin V positive apoptotic cells increased markedly. In addition, the invasiveness of MG-63 cells was inhibited by TSA in a concentration dependent manner. Conclusion: Our findings demonstrate that TSA inhibits the proliferation, induces apoptosis and inhibits invasiveness of osteosarcoma cells in vitro. HDAC inhibitors may thus have promise to become new therapeutic agents against osteosarcoma.

Reduction of Proliferation and Induction of Apoptosis are Associated with Shrinkage of Head and Neck Squamous Cell Carcinoma due to Neoadjuvant Chemotherapy

  • Sarkar, Shreya;Maiti, Guru Prasad;Jha, Jayesh;Biswas, Jaydip;Roy, Anup;Roychoudhury, Susanta;Sharp, Tyson;Panda, Chinmay Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6419-6425
    • /
    • 2013
  • Background: Neoadjuvant chemotherapy (NACT) is a treatment modality whereby chemotherapy is used as the initial treatment of HNSCC in patients presenting with advanced cancer that cannot be treated by other means. It leads to shrinkage of tumours to an operable size without significant compromise to essential oro-facial organs of the patients. The molecular mechanisms behind shrinkage due to NACT is not well elucidated. Materials and Methods: Eleven pairs of primary HNSCCs and adjacent normal epithelium, before and after chemotherapy were screened for cell proliferation and apoptosis. This was followed by immunohistochemical analysis of some cell cycle (LIMD1, RBSP3, CDC25A, CCND1, cMYC, RB, pRB), DNA repair (MLH1, p53) and apoptosis (BAX, BCL2) associated proteins in the same set of samples. Results: Significant decrease in proliferation index and increase in apoptotic index was observed in post-therapy tumors compared to pre-therapy. Increase in the RB/pRB ratio, along with higher expression of RBSP3 and LIMD1 and lower expression of cMYC were observed in post-therapy tumours, while CCND1 and CDC25A remained unchanged. While MLH1 remained unchanged, p53 showed higher expression in post-therapy tumors, indicating inhibition of cell proliferation and induction of apoptosis. Increase in the BAX/BCL2 ratio was observed in post-therapy tumours, indicating up-regulation of apoptosis in response to therapy. Conclusions: Thus, modulation of the G1/S cell cycle regulatory proteins and apoptosis associated proteins might play an important role in tumour shrinkage due to NACT.

Apoptosis Induction and Associated Factor of Staphylococcus aureus in J774A.1 Mouse Macrophage Cell Line (황색포도구균에 의한 J774A.1 마우스 대식세포주의 Apoptosis 유도 및 관련인자)

  • Kim, Sang-Ho;Lee, Chang-Min;Jeong, Soo-Jin;Jeong, Min-Ho;Kim, Jin-Koo;Cha, Jae-Kwan;Lee, Hyung-Sik;Lim, Young-Jin;Lee, Sang-Hwa
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.1
    • /
    • pp.87-95
    • /
    • 2000
  • Staphylococcus aureus infections are often life-threatening. Relatively little is known about the host response to these infections, in particular, the implication of apoptosis induced by this microorganism. In this study, we have shown that S. aureus was cytotoxic to J774A.1 cell, a murine macrophage cell line. The cell death mediated by S. aureus occurred through apoptosis, as shown by increase in the proportion of fragmented host cell DNA. Although phagocytosis and NO production had important role in the induction of apoptosis, the contact between bacteria and host cells was not essential for this pathway. A certain bacterial product could also induce typical caspase-dependent apoptosis of J774A.1 cell. It is expected that new interpretation may be possible to host-parasite relationship based on these results.

  • PDF

LY294002 Induces G0/G1 Cell Cycle Arrest and Apoptosis of Cancer Stem-like Cells from Human Osteosarcoma Via Down-regulation of PI3K Activity

  • Gong, Chen;Liao, Hui;Wang, Jiang;Lin, Yang;Qi, Jun;Qin, Liang;Tian, Lin-Qiang;Guo, Feng-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3103-3107
    • /
    • 2012
  • Osteosarcoma, the most common primary mesenchymal malignant tumor, usually has bad prognosis in man, with cancer stem-like cells (CSCs) considered to play a critical role in tumorigenesis and drug-resistance. It is known that phosphatidylinositol 3-kinase (PI3K) is involved in regulation of tumor cell fates, such as proliferation, cell cycling, survival and apoptosis. Whether and how PI3K and inhibitors might cooperate in human osteosarcoma CSCs is still unknown. We therefore evaluated the effects of LY294002, a PI3K inhibitor, on the cell cycle and apoptosis of osteosarcoma CSCs in vitro. LY294002 prevented phosphorylation of protein kinase B (PKB/Akt) by inhibition of PI3K phosphorylation activity, thereby inducing G0/G1 cell cycle arrest and apoptosis in osteosarcoma CSCs. Further studies also demonstrated that apoptosis induction by LY294002 is accompanied by activation of caspase-9, caspase-3 and PARP, which are involved in the mitochondrial apoptosis pathway. Therefore, our results indicate PI3K inhibitors may represent a potential strategy for managing human osteosarcoma via affecting CSCs.

Licochalcone H Induces Cell Cycle Arrest and Apoptosis in Human Skin Cancer Cells by Modulating JAK2/STAT3 Signaling

  • Park, Kyung-Ho;Joo, Sang Hoon;Seo, Ji-Hye;Kim, Jumi;Yoon, Goo;Jeon, Young-Joo;Lee, Mee-Hyun;Chae, Jung-Il;Kim, Woo-Keun;Shim, Jung-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.30 no.1
    • /
    • pp.72-79
    • /
    • 2022
  • Licochalcone H (LCH) is a phenolic compound synthetically derived from licochalcone C (LCC) that exerts anticancer activity. In this study, we investigated the anticancer activity of LCH in human skin cancer A375 and A431 cells. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell viability assay was used to evaluate the antiproliferative activity of LCH. Cell cycle distribution and the induction of apoptosis were analyzed by flow cytometry. Western blotting assays were performed to detect the levels of proteins involved in cell cycle progression, apoptosis, and the JAK2/STAT3 signaling pathway. LCH inhibited the growth of cells in dose- and time-dependent manners. The annexin V/propidium iodide double staining assay revealed that LCH induced apoptosis, and the LCH-induced apoptosis was accompanied by cell cycle arrest in the G1 phase. Western blot analysis showed that the phosphorylation of JAK2 and STAT3 was decreased by treatment with LCH. The inhibition of the JAK2/STAT3 signaling pathway by pharmacological inhibitors against JAK2/STAT3 (cryptotanshinone (CTS) and S3I-201) simulated the antiproliferative effect of LCH suggesting that LCH induced apoptosis by modulating JAK2/STAT3 signaling.

Neurotropin protects rotator cuff tendon cells from lidocaine-induced cell death

  • Abe, Ryunosuke;Ohzono, Hiroki;Gotoh, Masafumi;Nakamura, Yosuke;Honda, Hirokazu;Nakamura, Hidehiro;Kume, Shinichiro;Okawa, Takahiro;Shiba, Naoto
    • Clinics in Shoulder and Elbow
    • /
    • v.24 no.4
    • /
    • pp.224-230
    • /
    • 2021
  • Background: Local anesthetics often are used in rotator cuff tears as therapeutic tools, although some cases have reported that they have detrimental effects. Neurotropin (NTP) is used widely in Japan as a treatment for various chronic pain conditions and is shown to have protective effects on cartilage and nerve cells. In this study, we investigated the protective effect of NTP against lidocaine-induced cytotoxicity. Methods: Tenocytes from rotator cuff tendons were incubated with lidocaine, NTP, lidocaine with NTP, and a control medium. Cell viability was evaluated using the WST-8 assay. Cell apoptosis was detected via annexin V staining using flow cytometry. The expression of BCL-2 and cytochrome c, which are involved in the intrinsic mitochondrial pathway of apoptosis, was evaluated via Western blotting and immunohistochemical staining. Results: In the cell viability assay, lidocaine decreased cell viability in a dose-dependent manner, and NTP did not affect cell viability. Moreover, NTP significantly inhibited the cytotoxic effect of lidocaine. The flow cytometry analysis showed that lidocaine significantly induced apoptosis in tenocytes, and NTP considerably inhibited this lidocaine-induced apoptosis. Western blotting experiments showed that lidocaine decreased the protein expression of BCL-2, and that NTP conserved the expression of BCL-2, even when used with lidocaine. Immunohistochemical staining for cytochrome c showed that 0.1% lidocaine increased cytochrome c-positive cells, and NTP suppressed lidocaine-induced cytochrome c expression. Conclusions: NTP suppresses lidocaine-induced apoptosis of tenocytes by inhibiting the mitochondrial apoptotic pathway. Intra-articular/bursal injection of NTP with lidocaine could protect tenocytes in rotator cuff tendons against lidocaine-induced apoptosis.