• Title/Summary/Keyword: cell alignment

Search Result 321, Processing Time 0.025 seconds

Cloning and Characterization of the HSP70 Gene, and Its Expression in Response to Diapauses and Thermal Stress in the Onion Maggot, Delia antiqua

  • Chen, Bin;Kayukawa, Takumi;Monteiro, Antonia;Ishikawa, Yukio
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.749-758
    • /
    • 2006
  • The cytosolic members of the HSP70 family of proteins play key roles in the molecular chaperone machinery of the cell. In the study we cloned and sequenced the full-length cDNA of Delia antiqua HSP70 gene, which is 2461 bp long and encodes 643 a.a. with a calculated molecular mass of 70,787 Da. We investigated gene copies of cytosolic HSP70 members of 4 insect species with complete genome available, and found that they are quite variable with species. In order to characterize this protein we carried out an alignment and a phylogenetic analysis with 41 complete protein sequences from insects. The analysis divided the cytosolic members of the family into two classes, HSP70 and HSC70, distinguishable on the basis of 15 residues. HSP70 class members were slightly shorter in length and smaller in molecular mass relative to the HSC70 class members, and the conservative and functional regions in these sequences were documented. Mainly, we investigated the expression of Delia antiqua HSP70 gene, in response to diapauses and thermal stresses. Both summer and winter diapauses elevated HSP70 transcript levels. Cold-stress led to increased HSP70 expression levels in summer- and winter-diapausing pupae, but heat-stress elevated the levels only in the winter-diapausing pupae. In all cases, the expression levels, after being elevated, gradually decreased with time. HSP70 expression was low in non-diapausing pupae but was up-regulated following cold- and heat-stresses. Heat-stress gradually increased the mRNA level with time whereas cold-stress gradually decreased levels after an initial increase.

Cross-immunizing potential of tumor MAGE-A epitopes recognized by HLA-A*02:01-restricted cytotoxic T lymphocytes

  • Huang, Ze-Min;Jia, Zheng-Cai;Tang, Jun;Zhang, Yi;Tian, Yi;Ni, Dong-Jing;Wang, Fang;Wu, Yu-Zhang;Ni, Bing
    • BMB Reports
    • /
    • v.45 no.7
    • /
    • pp.408-413
    • /
    • 2012
  • Almost all melanoma cells express at least one member of the MAGE-A antigen family, making the cytotoxic T cells (CTLs) epitopes with cross-immunizing potential in this family attractive candidates for the broad spectrum of anti-melanoma immunotherapy. In this study, four highly homologous peptides (P264: FLWGPRALA, P264I9: FLWGPRALI, P264V9: FLWGPRALV, and P264H8: FLWGPRAHA) from the MAGE-A antigens were selected by homologous alignment. All four peptides showed high binding affinity and stability to HLA-A$^*02:01$ molecules, and could prime CTL immune responses in human PBMCs and in HLA-A$^*02:01/K^b$ transgenic mice. CTLs elicited by the four epitope peptides could cross-lyse tumor cells expressing the mutual target antigens, except MAGE-A11 which was not tested. However, CTLs induced by P264V9 and P264I9 showed the strongest target cell lysis capabilities, suggesting both peptides may represent the common CTL epitopes shared by the eight MAGE-A antigens, which could induce more potent and broad-spectrum antitumor responses in immunotherapy.

Surface Topographical Cues for Regulating Differentiation of Human Neural Stem Cells

  • Yang, Kisuk;Lee, Jong Seung;Lee, Jaehong;Cheong, Eunji;Lee, Taeyoon;Im, Sung Gap;Cho, Seung-Woo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.122.2-122.2
    • /
    • 2016
  • Surface topographical cues has been highlighted to control the fate of neural stem cells (NSCs). Herein we developed a hierarchically patterned substrate (HPS) platform for regulating NSC differentiation. The HPS induced cytoskeleton alignment and highly activated focal adhesion in hNSCs as indicated by enhanced expression of focal adhesion proteins such as focal adhesion kinase (FAK) and vinculin. hNSCs cultured on HPS exhibited enhanced neuronal differentiation compared to flat group. We also developed a graphene oxide (GO)-based hierarchically patterned substrates (GPS) that promote focal adhesion formation and neuronal differentiation of hNSCs. Enhanced focal adhesion and differentiation of hNSCs on the HPS was reversed by blocking the ${\beta}1$ integrin binding and mechanotransduction-associated signals including Rho-associated protein kinase (ROCK) and extracellular-regulated kinase (ERK) pathway, which may suggest a potential mechanism of beneficial effects of HPS. In addition, hNSCs on the HPS differentiated into functional neurons exhibiting sodium currents and action potentials as confirmed by whole cell patch-clamping analysis. The hierarchical topography can direct differentiation of NSCs towards functional neurons, and therefore would be an important element for the design of functional biomaterials for neural tissue regeneration applications.

  • PDF

Integrated Hybrid Device for High-Efficiency Size-Tunable Particle Separation (고효율 크기 가변적 입자 분리를 위한 통합 하이브리드 소자)

  • Choo, Seung Hee;Park, Jion;Kim, Tae Eun;Gang, Tae Gyeoung;An, Jun Seok;Oh, Gayeong;Kim, Yeojin;Park, Kyu Been;Park, Chaewon;Lee, Minjeong;Lim, Hyunjung;Nam, Jeonghun
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.170-176
    • /
    • 2022
  • Cell separation from a heterogenous mixture sample is an essential process for downstream analysis in biological, chemical, and clinical applications. This study demonstrates an integrated hybrid device of the viscoelastic focusing in a straight rectangular channel and subsequent size-based separation using acoustophoresis to attain high efficiency and separation tunability. For particle pre-alignment in a viscoelastic fluid, the flow rate higher than 10 μl/min was required. Surface acoustic wave-based lateral migration of particles with different sizes (13 and 27 ㎛) was examined at various applied voltages and flow rate conditions. Therefore, the flow rate of 100 μl/min and the applied voltage of 20 Vpp can be used for size-based particle separation.

Comparison of Augmentation Method for Achilles Tendon Repair: Using Thoracolumbar Fascia and the Polypropylene Mesh

  • Jieun Seo;Won-Jae Lee;Min Jang;Min-Soo Seo;Seong Mok Jeong;Sae-Kwang Ku;Youngsam Kwon;Sungho Yun
    • Journal of Veterinary Clinics
    • /
    • v.40 no.1
    • /
    • pp.16-24
    • /
    • 2023
  • This study aimed to compare complete ruptured tendon healing between two different repair methods using the Achilles tendon of New Zealand white rabbits. Thoracolumbar fascia (TF) padded Kessler suture, polypropylene mesh (PM) padded Kessler suture, and Kessler suture only were performed on the completely transected lateral gastrocnemius tendon, and biomechanical and histologic characteristics were assessed after 8 weeks. For biomechanical assessment, the tensile strength of each repaired tendon was measured according to the established methods. For histomorphometric analysis, hematoxylin and eosin staining for general histology, and Masson's trichrome (MT) staining for collagen fibers, Alcian blue (AB) staining for proteoglycans were performed and analyzed. Significant increases in tensile strength with remarkable decreases in the abnormalities against nuclear roundness, cell density, fiber structure, and fiber alignment and significant decreases in the mean number of infiltrated inflammatory cells and AB-positive proteoglycan-occupied regions with increases in MT-positive collagen fiber-occupied regions were demonstrated in the Kessler suture with PM or TF padding groups as compared to those of the Kessler suture group. Both of PM and TF provided potent tensile strength and supported healing with the evidence of histological examinations. This means that augmentation with PM is useful for repairing a completely ruptured Achilles tendon, without additional surgery for autograft material harvesting.

Morphology and phylogenetic relationships of two Antarctic strains within the genera Carolibrandtia and Chlorella (Chlorellaceae, Trebouxiophyceae)

  • Hyunsik Chae;Eun Jae Kim;Han Soon Kim;Han-Gu Choi;Sanghee Kim;Ji Hee Kim
    • ALGAE
    • /
    • v.38 no.4
    • /
    • pp.241-252
    • /
    • 2023
  • The genera Carolibrandtia and Chlorella have been described as small green algae with spherical cell shapes that inhabit various environments. Species of these genera are often difficult to identify because of their simple morphology and high phenotypic plasticity. We investigated two small coccoid strains from Antarctica based on morphology, molecular phylogeny by two alignment methods which have been applied to previous phylogenetic studies of the genus Chlorella, and comparison of the secondary structures of nuclear small subunit (SSU) and internal transcribed spacer (ITS) rDNA sequences. Light microscopy of two strains revealed spherical cells containing chloroplasts with pyrenoids, and the morphological characteristics of the strains were nearly identical to those of other Chlorella species. However, based on the phylogenetic analyses of nuclear SSU and ITS rDNA sequences, it was determined that the Antarctic microalgal strains belonged to two genera, as the Chlorella and Carolibrandtia. In addition, the secondary structures of the SSU and ITS2 sequences were analyzed to detect compensatory base changes (CBCs) that were used to identify and describe the two strains. A unique CBC in the SSU rDNA gene was decisive for distinguishing strain CCAP 211/45. The ITS2 rDNA sequences for each strain were compared to those obtained previously from other closely related species. Following the comparison of morphological and molecular characteristics, we propose KSF0092 as a new species, Chlorella terrestris sp. nov., and the reassignment of the strain Chlorella antarctica CCAP 211/45 into Carolibrandtia antarctica comb. nov.

Molecular Characterization and Ontogenetic Expression Patterns of Recombination Activating Genes (RAG1/2) in Marine Medaka Oryzias dancena (바다송사리(Oryzias dancena)의 재조합활성화 유전자 RAG1/2의 분자 특성 및 개체발생학적 발현 패턴)

  • Tae-Su Kim;Juhwan Park;Yoon Kwon Nam;Chan-Hee Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.3
    • /
    • pp.239-252
    • /
    • 2024
  • Recombination activating genes (RAGs) play a crucial role in initiating V(D)J recombination, which is essential for developing adaptive immunity in vertebrates. In this study, we cloned and characterized RAG1/2 cDNA from the marine medaka Oryzias dancena (OdRAG1/2) and investigated their mRNA expression patterns during ontogenetic developmental stages. The OdRAG1 and OdRAG2 cDNA contained open reading frames (ORFs) encoding proteins containing 1,078 and 531 amino acids, respectively. Multiple sequence alignment and phylogenetic analysis revealed that OdRAG1 and OdRAG2 are highly conserved with their corresponding orthologs, featuring distinct core and non-core regions. Notably, expression analysis showed that, in contrast to other fish RAGs studied, OdRAG1/2 expression peaked at 0 days post-hatching (DPH). Additionally, for the expression of T and B cell differentiation markers, CD3γ and CD20, also peaked at 0 DPH. Collectively, adaptive immunity in O. dancena potentially begins during embryonic development, which is critical for V(D)J recombination and essential immune component development, suggesting the early ontogenetic stage interactions between innate and adaptive immunity.

Identification and characteristics of DDX3 gene in the earthworm, Perionyx excavatus (팔딱이 지렁이(Perionyx excavatus) DDX3 유전자의 동정 및 특성)

  • Park, Sang Gil;Bae, Yoon-Hwan;Park, Soon Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.1
    • /
    • pp.70-81
    • /
    • 2015
  • Helicases are known to be a proteins that use the chemical energy of NTP binding and hydrolyze to separate the complementary strands of double-stranded nucleic acids to single-stranded nucleic acids. They participate in various cellular metabolism in many organisms. DEAD-box proteins are ATP-dependent RNA helicase that participate in all biochemical steps involving RNA. DEAD-box3 (DDX3) gene is belonging to the DEAD-box family and plays an important role in germ cell development in many organisms including not only vertebrate, but also invertebrate during asexual and sexual reproduction and participates in stem cell differentiation during regeneration. In this study, in order to identify and characterize DDX3 gene in the earthworm, Perionyx excavatus having a powerful regeneration capacity, total RNA was isolated from adult head containing clitellum. Full length of DDX3 gene from P. excavatus, Pe-DDX3, was identified by RT-PCR using the total RNA from head as a template. Pe-DDX3 encoded a putative protein of 607 amino acids and it also has the nine conserved motifs of DEAD-box family, which is characteristic of DEAD-box protein family. It was confirmed that Pe-DDX3 has the nine conserved motifs by the comparison of entire amino acids sequence of Pe-DDX3 with other species of different taxa. Phylogenetic analysis revealed that Pe-DDX3 belongs to a DDX3 (PL10) subgroup of DEAD-box protein family. And it displayed a high homology with PL10a, b from P. dumerilii.

Investigation of Conserved Gene in Microbial Genomes using in silico Analysis (미생물 유전체의 in silico분석에 의한 보존적 유전자 탐색)

  • 강호영;신창진;강병철;박준형;신동훈;최정현;조환규;차재호;이동근
    • Journal of Life Science
    • /
    • v.12 no.5
    • /
    • pp.610-621
    • /
    • 2002
  • Conserved genes are importantly used to understand the major function in survival and replication of living organism. This study was focused on identification of conserved genes in microbial species and measuring the degree of conservation. For this purpose, in silico analysis was performed to search conserved genes based on the conservation level within microbial species. The ortholog list of COGs (Clusters of Orthologous Groups of proteins) in NCBI was used and whole genomes of 43 microbial species were included in that list. The distance value, derived from CLUSTALW multiple alignment program, was used as a descriptor of the conservation level of orthologs. It was revealed that 43 microbial genomes hold 72 conserved orthologs in common. The majority(72.2%) of the conserved genes was related to "translation, ribosomal structure and biogenesis" functional category. A GTPase-translation elogation factor(COG0050) was the best conserved gene from the distance value analysis. The 72 conserved genes, found in this research, would be useful not only to study minimal function genes but also new drug target among pathogens and to make a model of the virtual cell.tual cell.

Cloning and Expression of the Cathepsin F-like Cysteine Protease Gene in Escherichia coli and Its Characterization

  • Joo, Han-Seung;Koo, Kwang-Bon;Park, Kyun-In;Bae, Song-Hwan;Yun, Jong-Won;Chang, Chung-Soon;Choi, Jang-Won
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.158-167
    • /
    • 2007
  • In this study, we have cloned a novel cDNA encoding for a papain-family cysteine protease from the Uni-ZAP XR cDNA library of the polychaete, Periserrula leucophryna. This gene was expressed in Escherichia coli using the T7 promoter system, and the protease was characterized after partial purification. First, the partial DNA fragment (498 bp) was amplified from the total RNA via RT-PCR using degenerated primers derived from the conserved region of cysteine protease. The full-length cDNA of cysteine protease (PLCP) was prepared via the screening of the Uni-ZAP XR cDNA library using the $^{32}P-labeled$ partial DNA fragment. As a result, the PLCP gene was determined to consist of a 2591 bp nucleotide sequence (CDS: 173-1024 bp) which encodes for a 283-amino acid polypeptide, which is itself composed of an 59-residue signal sequence, a 6-residue propeptide, a 218-residue mature protein, and a long 3'-noncoding region encompassing 1564 bp. The predicted molecular weights of the preproprotein and the mature protein were calculated as 31.8 kDa and 25 kDa, respectively. The results of sequence analysis and alignment revealed a significant degree of sequence similarity with other eukaryotic cysteine proteases, including the conserved catalytic triad of the $Cys^{90},\;His^{226},\;and\;Asn^{250}$ residues which characterize the C1 family of papain-like cysteine protease. The nucleotide and amino acid sequences of the novel gene were deposited into the GenBank database under the accession numbers, AY390282 and AAR27011, respectively. The results of Northern blot analysis revealed the 2.5 kb size of the transcript and ubiquitous expression throughout the entirety of the body, head, gut, and skin, which suggested that the PLCP may be grouped within the cathepsin F-like proteases. The region encoding for the mature form of the protease was then subcloned into the pT7-7 expression vector following PCR amplification using the designed primers, including the initiation and termination codons. The recombinant cysteine proteases were generated in a range of 6.3 % to 12.5 % of the total cell proteins in the E. coli BL21(DE3) strain for 8 transformants. The results of SDS-PAGE and Western blot analysis indicated that a cysteine protease of approximately 25 kDa (mature form) was generated. The optimal pH and temperature of the enzyme were determined to be approximately 9.5 and $35^{\circ}C$, respectively, thereby indicating that the cysteine protease is a member of the alkaline protease group. The evaluation of substrate specificity indicated that the purified protease was more active towards Arg-X or Lys-X and did not efficiently cleave the substrates with non-polar amino acids at the P1 site. The PLCP evidenced fibrinolytic activity on the plasminogen-free fibrin plate test.