• Title/Summary/Keyword: cell adhesion molecules

Search Result 236, Processing Time 0.027 seconds

Expression of Intercellular Adhesion Molecule-1 and E-Selectin in Gastric Cancer and Their Clinical Significance

  • Jung, Woo-Chul;Jang, You-Jin;Kim, Jong-Han;Park, Sung-Soo;Park, Seong-Heum;Kim, Seung-Joo;Mok, Young-Jae;Kim, Chong-Suk
    • Journal of Gastric Cancer
    • /
    • v.12 no.3
    • /
    • pp.140-148
    • /
    • 2012
  • Purpose: Among cell adhesion molecules, serum levels of intercellular adhesion molecule-1 and E-selectin are known to be correlated with the metastatic potential of gastric cancer. In the present study, the authors investigated the expression of intercellular adhesion molecule-1 and E-selectin in gastric cancer tissues and cultured gastric cancer cells, and examined their clinical value in gastric cancer. Materials and Methods: The protein was extracted from gastric cancer tissues and cultured gastric cancer cells (MKN-28 and Kato-III) and the expression of intercellular adhesion molecule-1 and E-selectin was examined by western blotting. The clinical significance of intercellular adhesion molecule-1 and E-selectin was explored, using immunohistochemical staining of specimens from 157 gastric cancer patients. Results: In western blot analysis, the expressions of intercellular adhesion molecule-1 in gastric cancer tissues and cultured gastric cancer cells were increased, however, E-selectin in gastric cancer tissues and cells were not increased. Among 157 gastric cancer patients, 79 patients (50%) were intercellular adhesion molecule-1 positive and had larger tumor size, an increased depth of tumor invasion, lymph node metastasis and perineural invasion. The intercellular adhesion molecule-1 positive group showed a higher incidence of tumor recurrence (40.5%), and a poorer 3-year survival than the negative group (54.9 vs. 85.9%, respectively). Conclusions: Intercellular adhesion molecule-1 is overexpressed in gastric cancer tissues and cultured gastric cancer cells, whereas E-selectin is not overexpressed. Increased expression of intercellular adhesion molecule-1 in gastric cancer could be related to the aggressive nature of the tumor, and has a poor prognostic effect on gastric cancer.

Gamma-aminobutyric acid-salt attenuated high cholesterol/high salt diet induced hypertension in mice

  • Son, Myeongjoo;Oh, Seyeon;Lee, Hye Sun;Choi, Junwon;Lee, Bae-Jin;Park, Joung-Hyun;Park, Chul Hyun;Son, Kuk Hui;Byun, Kyunghee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.27-38
    • /
    • 2021
  • Excessive salt intake induces hypertension, but several gamma-aminobutyric acid (GABA) supplements have been shown to reduce blood pressure. GABA-salt, a fermented salt by L. brevis BJ20 containing GABA was prepared through the post-fermentation with refined salt and the fermented GABA extract. We evaluated the effect of GABA-salt on hypertension in a high salt, high cholesterol diet induced mouse model. We analyzed type 1 macrophage (M1) polarization, the expression of M1 related cytokines, GABA receptor expression, endothelial cell (EC) dysfunction, vascular smooth muscle cell (VSMC) proliferation, and medial thicknesses in mice model. GABA-salt attenuated diet-induced blood pressure increases, M1 polarization, and TNF-α and inducible nitric oxide synthase (NOS) levels in mouse aortas, and in salt treated macrophages in vitro. Furthermore, GABA-salt induced higher GABAB receptor and endothelial NOS (eNOS) and eNOS phosphorylation levels than those observed in salt treated ECs. In addition, GABA-salt attenuated EC dysfunction by decreasing the levels of adhesion molecules (E-selectin, Intercellular Adhesion Molecule-1 [ICAM-1], vascular cell adhesion molecule-1 [VCAM-1]) and of von Willebrand Factor and reduced EC death. GABA-salt also reduced diet-induced reductions in the levels of eNOS, phosphorylated eNOS, VSMC proliferation and medial thickening in mouse aortic tissues, and attenuated Endothelin-1 levels in salt treated VSMCs. In summary, GABA-salt reduced high salt, high cholesterol diet induced hypertension in our mouse model by reducing M1 polarization, EC dysfunction, and VSMC proliferation.

Comparative study on the cellular activities of osteoblast-like cells and new bone formation of anorganic bone mineral coated with tetra-cell adhesion molecules and synthetic cell binding peptide

  • Yu, Hyeon-Seok;Noh, Woo-Chang;Park, Jin-Woo;Lee, Jae-Mok;Yang, Dong-Jun;Park, Kwang-Bum;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.6
    • /
    • pp.293-301
    • /
    • 2011
  • Purpose: We have previously reported that tetra-cell adhesion molecule (T-CAM) markedly enhanced the differentiation of osteoblast-like cells grown on anorganic bone mineral (ABM). T-CAM comprises recombinant peptides containing the Arg- Gly-Asp (RGD) sequence in the tenth type III domain, Pro-His-Ser-Arg-Asn (PHSRN) sequence in the ninth type III domain of fibronectin (FN), and the Glu-Pro-Asp-Ilu-Met (EPDIM) and Tyr-His (YH) sequence in the fourth fas-1 domain of ${\beta}$ig-h3. Therefore, the purpose of this study was to evaluate the cellular activity of osteoblast-like cells and the new bone formation on ABM coated with T-CAM, while comparing the results with those of synthetic cell binding peptide (PepGen P-15). Methods: To analyze the cell viability, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed, andto analyze gene expression, northernblot was performed. Mineral nodule formations were evaluated using alizarin red stain. The new bone formations of each group were evaluated using histologic observation and histomorphometrc analysis. Results: Expression of alkaline phosphatase mRNA was similar in all groups on days 10 and 20. The highest expression of osteopontin mRNA was observed in the group cultured with ABM/P-15, followed by those with ABM/T-CAM and ABM on days 20 and 30. Little difference was seen in the level of expression of collagen type I mRNA on the ABM, ABM/T-CAM, and ABM/P-15 cultured on day 20. There were similar growth and proliferation patterns for the ABM/T-CAM and ABM/P-15. The halo of red stain consistent with $Ca^{2+}$ deposition was wider and denser around ABM/T-CAM and ABM/P-15 particles than around the ABM particles. The ABM/T-CAM group seemed to have bone forming bioactivity similar to that of ABM/P-15. A complete bony bridge was seen in two thirds of the defects in the ABM/T-CAM and ABM/P-15 groups. Conclusions: ABM/T-CAM, which seemed to have bone forming bioactivity similar to ABM/P-15, was considered to serve as effective tissue-engineered bone graft material.

Effect of Heparin-binding Epidermal Growth Factor (HB-EGF) on Integrin $\alpha_{\nu}-\betaFe_3$ Expression in Preimplantation Mouse Embryos

  • Lim, Jung-Jin;Shin, Hyun-Sang;Lee, Ji-Won;Kang, Sue-Man;Lee, Sung-Eun;Kang, Han-Seung;Kim, Moon-Kyoo
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.102-102
    • /
    • 2002
  • Heparin-bindin epidermal growth factor (HB-EGF) is one of the EGF family to be expressed at the time of implantation in the mouse uterus. Although HB-EGF has been shown to stimulate the development of embryo and uterus in the mouse, its correlation between cell adhesion molecules remains undefined. Integrin $\alpha$$_{ν}$$\beta$$_3$, one of the cell adhesion molecules, is an important mediator of cell-substratum and cell-cell adhesion in implantation. In the present studies, we investigated the effects of HB-EGF on the embryonic development, initiation of implantation and expression of integrin $\alpha$$_{ν}$$\beta$$_3$ in in vitro culture, blocking of HB-EGF, RT-PCR and immunofluores cence analysis. The results showed that HB-EGF significantly improved the developmental rate of hatched embryos (24.1%, p<0.01) and outgrowth embryos (42.5%, p<0.01). On the other hand, this growth factor showed no offset before the hatching embryonic stage. Analysis of RT-PCR showed that HB-EGF upregulated the expression level of integrina $\alpha$$_{ν}$$\beta$$_3$ subunit genes on the preimplantation embryo and outgrowth of blastocyst (120hr and 144hr after hCG injection). Immunofluorescence analysis showed that the integrin $\alpha$$_{ν}$$\beta$$_3$ subunits localized at the pericellular borders and cell-cell contact areas. Increase in fluorescence intensity was observed in the HB-EGF treated embryos. Intrauterine injection of an anti-HB-EGF antiserum at day 3 significantly decreased the number of implantation sites (14.4, p<0.01) and significantly increased the number of recovered embryos(6.4, p<0.05) at day 5. From these results, it imply that HB-EGF improve the embryo development and accelerated the expression of integrin $\alpha$$_{ν}$$\beta$$_3$ in the preimplantation mouse embryos.

  • PDF

Non-Thermal Atmospheric-Pressure Plasma Possible Application in Wound Healing

  • Haertel, Beate;von Woedtke, Thomas;Weltmann, Klaus-Dieter;Lindequist, Ulrike
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.477-490
    • /
    • 2014
  • Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.

Transforming growth factor β1 enhances adhesion of endometrial cells to mesothelium by regulating integrin expression

  • Choi, Hee-Jung;Park, Mi-Ju;Kim, Bo-Sung;Choi, Hee-Jin;Joo, Bosun;Lee, Kyu Sup;Choi, Jung-Hye;Chung, Tae-Wook;Ha, Ki-Tae
    • BMB Reports
    • /
    • v.50 no.8
    • /
    • pp.429-434
    • /
    • 2017
  • Endometriosis is the abnormal growth of endometrial cells outside the uterus, causing pelvic pain and infertility. Furthermore, adhesion of endometrial tissue fragments to pelvic mesothelium is required for the initial step of endometriosis formation outside uterus. $TGF-{\beta}1$ and adhesion molecules importantly function for adhesion of endometrial tissue fragments to mesothelium outside uterus. However, the function of $TGF-{\beta}1$ on the regulation of adhesion molecule expression for adhesion of endometrial tissue fragments to mesothelium has not been fully elucidated. Interestingly, transforming growth factor ${\beta}1$ ($TGF-{\beta}1$) expression was higher in endometriotic epithelial cells than in normal endometrial cells. The adhesion efficiency of endometriotic epithelial cells to mesothelial cells was also higher than that of normal endometrial cells. Moreover, $TGF-{\beta}1$ directly induced the adhesion of endometrial cells to mesothelial cells through the regulation of integrin of ${\alpha}V$, ${\alpha}6$, ${\beta}1$, and ${\beta}4$ via the activation of the $TGF-{\beta}1/TGF-{\beta}RI/Smad2$ signaling pathway. Conversely, the adhesion of $TGF-{\beta}1-stimulated$ endometrial cells to mesothelial cells was clearly reduced following treatment with neutralizing antibodies against specific $TGF-{\beta}1-mediated$ integrins ${\alpha}V$, ${\beta}1$, and ${\beta}4$ on the endometrial cell membrane. Taken together, these results suggest that $TGF-{\beta}1$ may act to promote the initiation of endometriosis by enhancing integrin-mediated cell-cell adhesion.

Inhibition of VLA-4/VCAM-1-mediated Cell Adhesion by Triterpenoid Saponins from Bupleurum falcatum L

  • Lee, Seung-Woong;Kim, Min-Seok;Lim, Ju-Hwan;Chang, Jong-Sun;Ling, Jin;Bae, Ki-Hwan;Lee, Woo-Song;Rho, Mun-Chual
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1931-1936
    • /
    • 2010
  • Discovery and isolation of compounds capable of blocking the interactions between VCAM-1 and VLA-4, a major pair of adhesion molecules contributing to the different steps of leukocyte migration across the endothelium in inflammatory responses, has been a major goal of this lab. Through bioactivity-guided fractionation, five saikosaponins were subsequently isolated from the methanol extracts of the roots of Bupleurum falcatum L. Their structures were elucidated by spectroscopic analysis ($^1H-$, $^{13}C$-NMR and 2D-NMR), as follows, saikosaponins: A (1); D (2); C (3); B3 (4); B4 (5). Compounds 1 and 2 inhibited interaction of sVCAM-1 and VLA-4 of THP-1 cells with respective $IC_{50}$ values of 7.8 and 1.7 ${\mu}M$. The aglycone structure of 2 also showed cell adhesion inhibitory activity with an $IC_{50}$ value of 21.1 ${\mu}M$. With these results, we suspect these two saikosaponins from the Bupleurum falcatum L. roots to be prime candidates for therapeutic strategies towards inflammation.

Phelligridin D maintains the function of periodontal ligament cells through autophagy in glucose-induced oxidative stress

  • Kim, Ji-Eun;Kim, Tae-Gun;Lee, Young-Hee;Yi, Ho-Keun
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.5
    • /
    • pp.291-302
    • /
    • 2020
  • Purpose: The objective of this study was to investigate whether phelligridin D could reduce glucose-induced oxidative stress, attenuate the resulting inflammatory response, and restore the function of human periodontal ligament cells (HPDLCs). Methods: Primary HPDLCs were isolated from healthy human teeth and cultured. To investigate the effect of phelligridin D on glucose-induced oxidative stress, HPDLCs were treated with phelligridin D, various concentrations of glucose, and glucose oxidase. Glucose-induced oxidative stress, inflammatory molecules, osteoblast differentiation, and mineralization of the HPDLCs were measured by hydrogen peroxide (H2O2) generation, cellular viability, alkaline phosphatase (ALP) activity, alizarin red staining, and western blot analyses. Results: Glucose-induced oxidative stress led to increased production of H2O2, with negative impacts on cellular viability, ALP activity, and calcium deposition in HPDLCs. Furthermore, HPDLCs under glucose-induced oxidative stress showed induction of inflammatory molecules (intercellular adhesion molecule-1, vascular cell adhesion protein-1, tumor necrosis factor-alpha, interleukin-1-beta) and disturbances of osteogenic differentiation (bone morphogenetic protein-2, and -7, runt-related transcription factor-2), cementogenesis (cementum protein-1), and autophagy-related molecules (autophagy related 5, light chain 3 I/II, beclin-1). Phelligridin D restored all these molecules and maintained the function of HPDLCs even under glucose-induced oxidative stress. Conclusions: This study suggests that phelligridin D reduces the inflammation that results from glucose-induced oxidative stress and restores the function of HPDLCs (e.g., osteoblast differentiation) by upregulating autophagy.

Activated Leukocyte Cell Adhesion Molecule: Expression in the Uterine Endometrium during the Estrous Cycle and Pregnancy in Pigs

  • Kim, Min-Goo;Shim, Jang-Soo;Seo, Hee-Won;Choi, Yo-Han;Lee, Chang-Kyu;Ka, Hak-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.7
    • /
    • pp.919-928
    • /
    • 2011
  • The pig exhibits true epitheliochorial placentation, where the fetal membrane maintains attachment throughout pregnancy but does not invade into the maternal uterine endometrium. Accordingly, the expression and function of cell adhesion molecules are very important for embryo implantation and the establishment of pregnancy. In our recent microarray analysis, we found that activated leukocyte cell adhesion molecule (ALCAM) was expressed in the uterine endometrium during pregnancy in pigs. To better understand the roles of ALCAM in the establishment and maintenance of pregnancy, we examined ALCAM expression in the uterine endometrium during the estrous cycle and pregnancy in pigs. Real-time RT-PCR analysis showed that ALCAM was differentially expressed in the uterine endometrium during the estrous cycle and pregnancy, with the highest levels on D12 of pregnancy. ALCAM mRNA was localized to the luminal and glandular epithelial cells and to the trophectoderm of conceptuses during early pregnancy. The steroid hormones estrogen and progesterone had no effect on ALCAM expression in an endometrial explant culture study. Further, we found that ALCAM expression in the uterine endometrium from gilts with somatic cell nuclear transfer-derived embryos was not different from that in gilts with embryos from natural mating. ALCAM was expressed in a pregnancy stage- and cell type-specific manner in the uterine endometrium and conceptuses during pregnancy. These findings suggest that ALCAM may play a role in the establishment of pregnancy. Further analysis of ALCAM will provide insight into the implantation process and establishment of pregnancy in pigs.

20S-dihydroprotopanaxadiol, a ginsenoside derivative, boosts innate immune responses of monocytes and macrophages

  • Kim, Mi-Yeon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.293-299
    • /
    • 2013
  • 20S-dihydroprotopanaxadiol (2H-PPD) is a derivative of protopanaxadiol, a glycone of ginsenosides prepared from Panax ginseng. Although ginsenosides and acidic polysaccharides are known to be major active ingredients in ginseng, the immunopharmacological activities of their metabolites and derivatives have not been fully explored. In this study, we aimed to elucidate the regulatory action of 2H-PPD on the function of monocytes and macrophages in innate immune responses. 2H-PPD was able to boost the phagocytic uptake of fluorescein isothiocyanate-dextran in macrophages and enhance the generation of radicals (reactive oxygen species) in sodium nitroprusside-treated RAW264.7 cells. The surface levels of the costimulatory molecules such as CD80 and CD86 were also increased during 2H-PPD treatment. In addition, this compound boosted U937 cell-cell aggregation induced by CD29 and CD43 antibodies, but not by cell-extracellular matrix (fibronectin) adhesion. Similarly, the surface levels of CD29 and CD43 were increased by 2H-PPD exposure. Therefore, our results strongly suggest that 2H-PPD has the pharmacological capability to upregulate the functional role of macrophages/monocytes in innate immunity.