• Title/Summary/Keyword: cell adaptation

Search Result 212, Processing Time 0.027 seconds

Stress granules dynamics: benefits in cancer

  • Jeong In, Lee;Sim, Namkoong
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.577-586
    • /
    • 2022
  • Stress granules (SGs) are stress-induced subcellular compartments, which carry out a particular function to cope with stress. These granules protect cells from stress-related damage and cell death through dynamic sequestration of numerous ribonucleoproteins (RNPs) and signaling proteins, thereby promoting cell survival under both physiological and pathological condition. During tumorigenesis, cancer cells are repeatedly exposed to diverse stress stimuli from the tumor microenvironment, and the dynamics of SGs is often modulated due to the alteration of gene expression patterns in cancer cells, leading to tumor progression as well as resistance to anticancer treatment. In this mini review, we provide a brief discussion about our current understanding of the fundamental roles of SGs during physiological stress and the effect of dysregulated SGs on cancer cell fitness and cancer therapy.

Anatomy and Morphology of Two Hawaiian Endemic Portulaca Species

  • Kim, InSun
    • Applied Microscopy
    • /
    • v.44 no.2
    • /
    • pp.41-46
    • /
    • 2014
  • In this study, the vegetative and reproductive morphology and anatomy of two Hawaiian endemic Portulaca species were examined. Specifically, P. molokiniensis and P. sclerocarpa were compared to closely related species in the genus. The comparisons were both qualitative and quantitative, using characteristics of leaves, stems, roots, and fruits. Tissue organizations of vegetative and reproductive parts of the plants were assessed using microtechnique procedures, statistical analysis, and scanning electron microscopy. The most notable features of these two species were (1) the size and frequency of stomata in P. molokiniensis, and (2) the large number of sclerenchymatous cell layers in the thickest fruit walls of P. sclerocarpa. These findings may imply that stomata development in P. molokiniensis and thick fruit wall development in P. sclerocarpa are evolved features of survival. In particular, the development of thickened walls in indehiscent fruits likely has evolutionary implications of ecological tolerance for better adaptation.

An Ecological Approach to Nutritional Research (영양학 연구의 생택학적 접근)

  • 문수재
    • Journal of Nutrition and Health
    • /
    • v.34 no.1
    • /
    • pp.98-111
    • /
    • 2001
  • The article demonstrates a method of studying human health and nutrition by applying a multi-disciplinary approach and examines how humans developed and survived by adjusting to their environment. This process involves physiological, cultural and genetic adaptation both independently and interactively. This study postulates that a sound human health may be the result of balance between nutrition and environmental conditions. It is noted that there is a positive correlation between malaria and fava bean intake, and sickle cell anemia and cassava intake. It is also suggested that the difference in disease structure in soybean and non-soybean consumption cultures can be explained by an ecological approach to studying nutrition. This study further suggest that the relationship between nutrition and socio-cultural system. epidmiological study of nutrition and cultural environment nutrition and conceptual characteristics, nutrition and food intake pattern, nutrition and health sociological functions and the physioloical, cultural and genetic adaptation can all be stimulating research subjects to be studied form and ecological point of view. This article also includes the results from a series of ecological studies conducted by the author investigating the relationship between nutritional status of Korean breast-feeding mothers and the composition of the human milk and also the Vitamin D status of Korean and their lifestyle. (Korean J Nutrition 34(1):98-111, 2001)

  • PDF

A Development of Working Adaptation Evaluation System using Finger Force Measurement (지력측정을 이용한 작업 적합성 평가 시스템개발)

  • Byeon, M.K.;Hur, Woong;Han, S.C.;Kim, J.K.
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2002.05a
    • /
    • pp.31-36
    • /
    • 2002
  • In this paper, we developed a working adaptation evaluation system using finger force measurement which interact between material and biological system. The system consists of a finger force transducer, a signal conditioner, an A/D converter, a computer, and a software system for data processing. The finger force transducer is made by a load cell and a special mechanism. The data processing software controls the A/D converter, data monitoring, and data analysis for group classification. The developed system were tested by 4 different materials in left hand and the finger forte transducer in the other hand's thumb and index finger with 16 persons. As the results of experiments, the developed system could measure the finger force quantitatively and classify the measured values into four groups.

  • PDF

Cooperative Strategies and Swarm Behavior in Distributed Autonomous Robotic Systems Based on Artificial Immune System (인공 면역계 기반 자율분산로봇 시스템의 협조 전략과 군행동)

  • Sim, Kwee-Bo;Lee, Dong-Wook;Sun, Sang-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1079-1085
    • /
    • 2000
  • In this paper, we propose a method of cooperative control (T-cell modeling) and selection of group behavior strategy (B-cell modeling) based on immune system in distributed autonomous robotic system (DARS). An immune system is the living bodys self-protection and self-maintenance system. these features can be applied to decision making of the optimal swarm behavior in a dynamically changing environment. For applying immune system to DARS, a robot is regarded as a B-cell, each environmental condition as an antigen, a behavior strategy as an antibody, and control parameter as a T-cell, respectively. When the environmental condition (antigen) changes, a robot selects an appropriate behavior strategy (antibody). And its behavior strategy is stimulated and suppressed by other robots using communication (immune network). Finally, much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and immune network hypothesis, and it is used for decision making of the optimal swarm strategy. Adaptation ability of the robot is enhanced by adding T-cell model as a control parameter in dynamic environments.

  • PDF

Transcriptomic Approach for Understanding the Adaptation of Salmonella enterica to Contaminated Produce

  • Park, Sojung;Nam, Eun woo;Kim, Yeeun;Lee, Seohyeon;Kim, Seul I;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1729-1738
    • /
    • 2020
  • Salmonellosis is a form of gastroenteritis caused by Salmonella infection. The main transmission route of salmonellosis has been identified as poorly cooked meat and poultry products contaminated with Salmonella. However, in recent years, the number of outbreaks attributed to contaminated raw produce has increased dramatically. To understand how Salmonella adapts to produce, transcriptomic analysis was conducted on Salmonella enterica serovar Virchow exposed to fresh-cut radish greens. Considering the different Salmonella lifestyles in contact with fresh produce, such as motile and sessile lifestyles, total RNA was extracted from planktonic and epiphytic cells separately. Transcriptomic analysis of S. Virchow cells revealed different transcription profiles between lifestyles. During bacterial adaptation to fresh-cut radish greens, planktonic cells were likely to shift toward anaerobic metabolism, exploiting nitrate as an electron acceptor of anaerobic respiration, and utilizing cobalamin as a cofactor for coupled metabolic pathways. Meanwhile, Salmonella cells adhering to plant surfaces showed coordinated upregulation in genes associated with translation and ribosomal biogenesis, indicating dramatic cellular reprogramming in response to environmental changes. In accordance with the extensive translational response, epiphytic cells showed an increase in the transcription of genes that are important for bacterial motility, nucleotide transporter/metabolism, cell envelope biogenesis, and defense mechanisms. Intriguingly, Salmonella pathogenicity island (SPI)-1 and SPI-2 displayed up- and downregulation, respectively, regardless of lifestyles in contact with the radish greens, suggesting altered Salmonella virulence during adaptation to plant environments. This study provides molecular insights into Salmonella adaptation to plants as an alternative environmental reservoir.

Development of a Parallel Cell-Based DSMC Method Using Unstructured Meshes (비정렬격자에서 병렬화된 격자중심 직접모사 기법 개발)

  • Kim, Hyeong-Sun;Kim, Min-Gyu;Gwon, O-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.1-11
    • /
    • 2002
  • In the present study, a parallel DSCM technique based on a cell-based data structure is developed for the efficient simulation of rarefied gas flows especially od PC clusters. Dynamic load balancing is archieved by decomposing the computational domain into several sub-domains and accounting for the number of particles and the number cells of each domain. Mesh adaptation algorithm is also applied to improve the resolution of the solution and to reduce the grid dependency. It was demonstrated that accurate solutions can be obtained after several levels of mesh adapation starting from a coars initial grid. The method was applied to a two-dimensioanal supersonic leading-edge flow and the axi-symmetric Rothe nozzle flow to validate the efficiency of the present method. It was found that the present method is a very effective tool for the efficient simulation of rarefied gas flow on PC-based parallel machines.

The effect of high potassium adaptation on hybridoma cell growth

  • Son, Chang-Kyun;Park, Hong-Woo
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.374-377
    • /
    • 2003
  • Hybridoma cells were adapted in media containing up to 80 mM $K^+$. The adapted cells obtained tolerance at high osmotic pressure and low pH. The adapted cells showed a maximum viable cell density of $1.1{\times}10^6$ cells/ml when a batch culture was progressed in a nutrient-fortified medium with Erlenmeyer flask at 450 $mOsm/kgH_2O,$ as compared to $4.8{\times}10^5$ cells/ml for non-adapted cells grown under the same conditions. The adapted cells also showed a maximum viable cell density of $7.8{\times}10^5$ cells/ml with the same method at initial pH 7.0 as compared to $5.3{\times}10^5$ cells/ml for non-adapted cells. Adaptation of animal cells at high $K^+$ levels may therefore lead to an improvement of their performance at limited conditions.

  • PDF

BolA Affects Cell Growth, and Binds to the Promoters of Penicillin-Binding Proteins 5 and 6 and Regulates Their Expression

  • Guinote, Ines Batista;Matos, Rute Goncalves;Freire, Patrick;Arraiano, Cecilia Maria
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.243-251
    • /
    • 2011
  • The gene bolA was discovered in the 80's, but unraveling its function in the cell has proven to be a complex task. The BolA protein has pleiotropic effects over cell physiology, altering growth and morphology, inducing biofilm formation, and regulating the balance of several membrane proteins. Recently, BolA was shown to be a transcription factor by repressing the expression of the mreB gene. The present report shows that BolA is a transcriptional regulator of the dacA and dacC genes, thus regulating both DD-carboxypeptidases PBP5 and PBP6 and thereby demonstrating the versatility of BolA as a cellular regulator. In this work, we also demonstrate that reduction of cell growth and survival can be connected to the overexpression of the bolA gene in different E. coli backgrounds, particularly in the exponential growth phase. The most interesting finding is that overproduction of BolA affects bacterial growth differently depending on whether the cells were inoculated directly from a plate culture or from an overnight batch culture. This strengthens the idea that BolA can be engaged in the coordination of genes that adapt the cell physiology in order to enhance cell adaptation and survival under stress conditions.

Cooperative Strategies and Swarm Behavior in Distributed Autonomous Robotic Systems based on Artificial Immune System

  • Sim, Kwee-bo;Lee, Dong-wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.591-597
    • /
    • 2001
  • In this paper, we propose a method of cooperative control (T-cell modeling) and selection of group behavior strategy (B-cell modeling) based on immune system in distributed autonomous robotic system (DARS). Immune system is living body's self-protection and self-maintenance system. These features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For applying immune system to DARS, a robot is regarded as a B-cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-cell respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other robot using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control school is based on clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy. By T-cell modeling, adaptation ability of robot is enhanced in dynamic environments.

  • PDF