• 제목/요약/키워드: cbb genes

검색결과 8건 처리시간 0.02초

Regulation of $CO_2$ Fixation Gene Expression in Acidithiobacillus ferrooxidans ATCC 23270 by Lix984n Shock

  • Wang, Wei;Xiao, Shuiming;Chao, Jing;Chen, Qijiong;Qiu, Guanzhou;Liu, Xueduan
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권11호
    • /
    • pp.1747-1754
    • /
    • 2008
  • Acidithiobaeillus ferrooxidans ATCC 23270 is an important model organism for bioleaching and bioremediation studies owing to its diverse metabolic capabilities, whereas lix984n is a widely used extractant. Little is known about the response of cbb genes in A. ferrooxidans to lix984n shock. Thus, to elucidate the response of the $CO_2$ fixation genes in A. ferrooxidans ATCC 23270 to the addition of lix984n, the gene expression of cbb genes was examined using a real-time PCR. Although a natural increase or decrease in the expression of most cbb genes was observed after 5 min of shock with 3% (v/v) lix984n, sdhC and cbbR exhibited quick responses to the shock. Ten min of shock had a greater effect on the cbb gene expression, yet 15 min of shock had a significant effect on the Calvin cycle in A. ferrooxidans ATCC 23270, as the expression of all the cbb genes reached a very high level. Therefore, after a short lix984n shock, a solution of A. ferrooxidans can be re-used for bioleaching.

Effects of Long-Term Fertilizer Practices on Rhizosphere Soil Autotrophic CO2-Fixing Bacteria under Double Rice Ecosystem in Southern China

  • Tang, Haiming;Wen, Li;Shi, Lihong;Li, Chao;Cheng, Kaikai;Li, Weiyan;Xiao, Xiaoping
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권10호
    • /
    • pp.1292-1298
    • /
    • 2022
  • Soil autotrophic bacterial communities play a significant role in the soil carbon (C) cycle in paddy fields, but little is known about how rhizosphere soil microorganisms respond to different long-term (35 years) fertilization practices under double rice cropping ecosystems in southern China. Here, we investigated the variation characteristics of rhizosphere soil RubisCO gene cbbL in the double rice ecosystems of in southern China where such fertilization practices are used. For this experiment we set up the following fertilizer regime: without any fertilizer input as a control (CK), inorganic fertilizer (MF), straw returning (RF), and organic and inorganic fertilizer (OM). We found that abundances of cbbL, 16S rRNA genes and RubisCO activity in rhizosphere soil with OM, RF and MF treatments were significantly higher than that of CK treatment. The abundances of cbbL and 16S rRNA genes in rhizosphere soil with OM treatment were 5.46 and 3.64 times higher than that of CK treatment, respectively. Rhizosphere soil RubisCO activity with OM and RF treatments increased by 50.56 and 45.22%, compared to CK treatment. Shannon and Chao1 indices for rhizosphere soil cbbL libraries with RF and OM treatments increased by 44.28, 28.56, 29.60, and 23.13% compared to CK treatment. Rhizosphere soil cbbL sequences with MF, RF and OM treatments mainly belonged to Variovorax paradoxus, uncultured proteobacterium, Ralstonia pickettii, Thermononospora curvata, and Azoarcus sp.KH33C. Meanwhile, cbbL-carrying bacterial composition was obviously influenced by soil bulk density, rhizosphere soil dissolved organic C, soil organic C, and microbial biomass C contents. Fertilizer practices were the principal factor influencing rhizosphere soil cbbL-carrying bacterial communities. These results showed that rhizosphere soil autotrophic bacterial communities were significantly changed under conditions of different long-term fertilization practices Therefore, increasing rhizosphere soil autotrophic bacteria community with crop residue and organic manure practices was found to be beneficial for management of double rice ecosystems in southern China.

Effect of Mutations of Five Conserved Histidine Residues in the Catalytic Subunit of the cbb3 Cytochrome c Oxidase on its Function

  • Oh Jeong-Il
    • Journal of Microbiology
    • /
    • 제44권3호
    • /
    • pp.284-292
    • /
    • 2006
  • The cbb3 cytochrome c oxidase has the dual function as a terminal oxidase and oxygen sensor in the photosynthetic bacterium, Rhodobacter sphaeroides. The cbb3 oxidase forms a signal transduction pathway together with the PrrBA two-component system that controls photosynthesis gene expression in response to changes in oxygen tension in the environment. Under aerobic conditions the cbb3 oxidase generates an inhibitory signal, which shifts the equilibrium of PrrB kinase/phosphatase activities towards the phosphatase mode. Photosynthesis genes are thereby turned off under aerobic conditions. The catalytic subunit (CcoN) of the R. sphaeroides cbb3 oxidase contains five histidine residues (H2l4, B233, H303, H320, and H444) that are conserved in all CcoN subunits of the cbb3 oxidase, but not in the catalytic subunits of other members of copper-heme superfamily oxidases. H214A mutation of CcoN affected neither catalytic activity nor sensory (signaling) function of the cbb3 oxidase, whereas H320A mutation led to almost complete loss of both catalytic activity and sensory function of the cbb3 oxidase. H233V and H444A mutations brought about the partial loss of catalytic activity and sensory function of the cbb3 oxidase. Interestingly, the H303A mutant form of the cbb3 oxidase retains the catalytic function as a cytochrome c oxidase as compared to the wild-type oxidase, while it is defective in signaling function as an oxygen sensor. H303 appears to be implicated in either signal sensing or generation of the inhibitory signal to the PrrBA two-component system.

R. sphaeroides 에서의 orf282 유전자의 분석과 이들의 기능 (Analysis of the orf 282 Gene and Its Function in Rhodobacter sphaeroide 2.4.1)

  • 손명화;이상준
    • 생명과학회지
    • /
    • 제22권8호
    • /
    • pp.1009-1017
    • /
    • 2012
  • Rodobacter sphaeroides에서 orf282 유전자는 cbb3 terminal oxidase를 암호화하는 ccoNOQP 오페론과 혐기적 활성자인 FnrL을 암호화하는 fnrL 유전자 사이에 있으며, 아직은 기능이 잘 알려지지 않았다. orf282 유전자의 기능을 알기 위해 우리는 orf282의 일부를 삭제함으로써 유전자를 붕괴시켜 orf282-minus mutant를 제조하였다. 두개의 FnrL 결합 부위가 orf282의 upstream에 존재한다는 것이 밝혀져 있으며, orf282 유전자가 FnrL에 의해 양성적으로 조절된다는 것이 증명되었다. orf282 유전자는 B875와 B800-850 spectral complexes의 형성과 관련이 없다. orf282 mutant에서의 cbb3 oxidase 활성을 wild type와 비교해보면 orf282 유전자가 ccoNOQP 오페론의 조절과 cbb3 cytochrome c oxidase의 생합성과 무관하다는 것을 알 수 있다. orf282 mutant의 구조 유전자인 nifH와 조절유전자인 nifA의 프로모터 활성이 증가한 것은 orf282 유전자 산물이 nifH와 nifA의 발현에서 음성적 effector로 작용한다는 것을 시사한다.

Screening and functional validation of lipid metabolism-related lncRNA-46546 based on the transcriptome analysis of early embryonic muscle tissue in chicken

  • Ruonan, Chen;Kai, Liao;Herong, Liao;Li, Zhang;Haixuan, Zhao;Jie, Sun
    • Animal Bioscience
    • /
    • 제36권2호
    • /
    • pp.175-190
    • /
    • 2023
  • Objective: The study was conducted to screen differentially expressed long noncoding RNA (lncRNA) in chickens by high-throughput sequencing and explore its mechanism of action on intramuscular fat deposition. Methods: Herein, Rose crown and Cbb broiler chicken embryo breast and leg muscle lncRNA and mRNA expression profiles were constructed by RNA sequencing. A total of 96 and 42 differentially expressed lncRNAs were obtained in Rose crown vs Cobb broiler chicken breast and leg muscle, respectively. lncRNA-ENSGALT00000046546, with high interspecific variability and a potential regulatory role in lipid metabolism, and its predicted downstream target gene 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), were selected for further study on the preadipocytes. Results: lncRNA-46546 overexpression in chicken preadipocyte 2 cells significantly increased (p<0.01) the expression levels of AGPAT2 and its downstream genes diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 and those of the fat metabolism-related genes peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding protein α, fatty acid synthase, sterol regulatory element-binding transcription factor 1, and fatty acid binding protein 4. The lipid droplet concentration was higher in the overexpression group than in the control cells, and the triglyceride content in cells and medium was also significantly increased (p<0.01). Conclusion: This study preliminarily concludes that lncRNA-46546 may promote intramuscular fat deposition in chickens, laying a foundation for the study of lncRNAs in chicken early embryonic development and fat deposition.

Brassinosteroid의 대사공학 (Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways)

  • 이미옥;송기홍;이현경;정지윤;최빛나리;최성화
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2002년도 추계학술대회
    • /
    • pp.69-75
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd/dwf3 were shown to be blocked in $D^4$ reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bri1/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus It is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRI1 could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

  • PDF

Brassinosteroid의 대사공학 (Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways)

  • 이미옥;송기홍;이현경;정지윤;최빛나리;최성화
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2002년도 춘계학술대회
    • /
    • pp.69-75
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd/dwf3 were Shown to be blocked in $D^4$ reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bri1/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRI1 could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

  • PDF

Brassinosteroid의 대사공학 (Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways)

  • 이미옥;송기홍;이현경;정지윤;최빛나리;최성화
    • Journal of Plant Biotechnology
    • /
    • 제29권2호
    • /
    • pp.139-144
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd /dwf3 were shown to be blocked in D$^4$reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bril/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRIl could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.