• Title/Summary/Keyword: cavity in karst area

Search Result 5, Processing Time 0.016 seconds

Characteristics of Lime-cavities and Survey Design for Bridge Foundation in the Karst Area (석회 공동의 특성과 카르스트 지역 내 교량 기초를 위한 조사 설계)

  • 윤운상;김학수;최원석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.399-406
    • /
    • 1999
  • Recently, the construction of the several highway bridges in the karst area have encountered severe problems associated with cavities and sinkholes. To solve this problems, it is important to understand the distribution characteristics of cavities in the construction site on limestone area. This paper briefly describes the different types, the distribution control factors and the infill sediment types of lime-cavities in the study area, bridge site in the karst area and propose the effective method of survey design. Cavity system may be divided into two main groups, 1)'slot and cave system'and 2)'sinkhole and cave system'. And the shape, the size and the distribution pattern of cavity are controlled by three main factors - rock type, geological structure and ground water condition. Additionally, infill sediment may be considered as one of the important design factors for foundation design and divided into four types by sediment properties. There are geophysical thechnics and geologic survey and drilling test, etc. by the survey method to interpretate characteristics of cavity system, and this methods are optimally designed at the site investigation stage.

  • PDF

Resistivity Imaging Using Borehole Electrical Resistivity Tomography: A Case of Land Subsidence in Karst Area Due to the Excessive Groundwater Withdrawal (시추공 전기비저항 토모그래피를 이용한 비저항 영상화: 과잉취수에 의한 석회암 지반침하 지역 사례)

  • Song, Sung-Ho;Lee, Gyu-Sang;Um, Jae-Youn;Suh, Jung-Jin
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.537-547
    • /
    • 2011
  • Electrical resistivity tomography surveys using boreholes were applied to reveal the cause of a catastrophic land subsidence accompanied by the excessive groundwater withdrawal in urban karst area and to map the connectivity of disseminated cavities over the study area. In order to understand the hydrogeological characteristics, resistivity using exsitu core samples, groundwater level for five boreholes, and hydraulic conductivity using slug test were measured. The hydraulic conductivity variation ranging from 0.8 to $9.3{\times}10^{-4}\;cm/s$ for five boreholes and a gentle slope of groundwater level indicated that there is no significant characteristics of hydraulic heterogeneity. Core samples of the lime-silicated rock were classified as three groups including cracked, weathered, and fresh and measured the resistivity values ranged from 103 to 161, 218 to 277, and 597 to 662 ohm-m, respectively. Drilling results that showed the cavity filled with clay materials and tomogram for this region indicated resistivity value lower than 50 ohm-m. From the inverted resistivity results for each section with five boreholes, cavity and fractured layer were distributed along the depth between 10 and 20 m overall area and cavities ranging from 4 to 6 m filled with clay materials.

Detection of cavities in a karst area by means of a 3D electrical resistivity technique (3차원 전기비저항탐사에 의한 카르스트 지역에서의 공동탐지)

  • Park, Sam-Gyu;Kim, Chang-Ryol;Son, Jung-Sul;Yi, Myeong-Jong;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.27-32
    • /
    • 2009
  • In this study, we examined the applicability of a 3D electrical resistivity technique for the probing of underground cavities at a field test site in a karst area in Yongweol-ri, Muan-gun, in the south-western part of the Korean peninsula. At the test site, where the ground has subsided in the past, underground cavities are commonly found in the limestone bedrock, which is overlain with alluvial deposits. The limestone cavities at the test site are mostly filled with groundwater and clay; hence, they show levels of electrical resistivity that are significantly lower than those of the surrounding host bedrock. The results of this study demonstrate that the zones of low resistivity correspond to the zones of the cavities identified in the boreholes at the site, and that our 3D electrical resistivity survey is a very effective tool for detecting and mapping underground cavities in a karst area.

Application of Geophysical Methods to Cavity Detection at the Ground Subsidence Area in Karst (물리탐사 기술의 석회암 지반침하 지역 공동탐지 적용성 연구)

  • Kim, Chang-Ryol;Kim, Jung-Ho;Park, Sam-Gyu;Park, Young-Soo;Yi, Myeong-Jong;Son, Jeong-Sul;Rim, Heong-Rae
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.271-278
    • /
    • 2006
  • Investigations of underground cavities are required to provide useful information for the reinforcement design and monitoring of the ground subsidence areas. It is, therefore, necessary to develop integrated geophysical techniques incorporating different geophysical methods in order to accurately image and to map underground cavities in the ground subsidence areas. In this study, we conducted geophysical investigations for development of integrated geophysical techniques to detect underground cavities at the field test site in the ground subsidence area, located at Yongweol-ri, Muan-eup, Muan-gun, Jeollanam-do. We examined the applicability of geophysical methods such as electrical resistivity, electromagnetic, and microgravity to cavity detection with the aid of borehole survey results. The underground cavities are widely present within the limestone bedrock overlain by the alluvial deposits in the test site where the ground subsidences have occurred in the past. The limestone cavities are mostly filled with groundwater or clays saturated with water in the site. The cavities, thus, have low electrical resistivity and density compared to the surrounding host bedrock. The results of the study have shown that the zones of low resistivity and density correspond to the zones of the cavities identified in the boreholes at the site, and that the geophysical methods used are very effective to detect the underground cavities. Furthermore, we could map the distribution of cavities more precisely with the study results incorporated from the various geophysical methods. It is also important to notice that the microgravity method, which has rarely used in Korea, is a very promising tool to detect underground cavities.