• Title/Summary/Keyword: cavity flows

Search Result 175, Processing Time 0.017 seconds

Numerical study of the flow and heat transfer characteristics in a scale model of the vessel cooling system for the HTTR

  • Tomasz Kwiatkowski;Michal Jedrzejczyk;Afaque Shams
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1310-1319
    • /
    • 2024
  • The reactor cavity cooling system (RCCS) is a passive reactor safety system commonly present in the designs of High-Temperature Gas-cooled Reactors (HTGR) that removes heat from the reactor pressure vessel by means of natural convection and radiation. It is one of the factors responsible for ensuring that the reactor does not melt down under any plausible accident scenario. For the simulation of accident scenarios, which are transient phenomena unfolding over a span of up to several days, intermediate fidelity methods and system codes must be employed to limit the models' execution time. These models can quantify radiation heat transfer well, but heat transfer caused by natural convection must be quantified with the use of correlations for the heat transfer coefficient. It is difficult to obtain reliable correlations for HTGR RCCS heat transfer coefficients experimentally due to such a system's size. They could, however, be obtained from high-fidelity steady-state simulations of RCCSs. The Rayleigh number in RCCSs is too high for using a Direct Numerical Simulation (DNS) technique; thus, a Reynolds-Averaged Navier-Stokes (RANS) approach must be employed. There are many RANS models, each performing best under different geometry and fluid flow conditions. To find the most suitable one for simulating an RCCS, the RANS models need to be validated. This work benchmarks various RANS models against three experiments performed on the HTTR RCCS Mockup by the Japanese Atomic Energy Agency (JAEA) in 1993. This facility is a 1/6 scale model of a vessel cooling system (VCS) for the High Temperature Engineering Test Reactor (HTTR), which is operated by JAEA. Multiple RANS models were evaluated on a simplified 2d-axisymmetric geometry. They were found to reproduce the experimental temperature profiles with errors of up to 22% for the lowest temperature benchmark and 15% for the higher temperature benchmarks. The results highlight that the pragmatic turbulence models need to be validated for high Rayleigh natural convection-driven flows and improved accordingly, more publicly available experimental data of RCCS resembling experiments is needed and indicate that a 2d-axisymmetric geometry approximation is likely insufficient to capture all the relevant phenomena in RCCS simulations.

Natural Convection in a Water Tank with a Heated Horizontal Plate Facing Downward (아래로 향한 수평가열판이 있는 수조에서의 자연대류)

  • Yang, Sun-Kyu;Chung, Moon-Ki;Helmut Hoffmann
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.301-316
    • /
    • 1995
  • experimental and computational studies ore carried out to investigate the natural convection of the single phase flow in a tank with a heated horizontal plate facing downward. This is a simplified model for investigations of the influence of a core melt at the bottom of a reactor vessel on the thermal hydraulic behavior in a oater filled cavity surrounding the vessel. In this case the vessel is simulated by a hexahedron insulated box with a heated plate Horizontally mounted at the bottom of the box. The box with the heated plate is installed in a water filled hexahedron tank. Coolers are immersed in the U-type water volume between the box and the tank. Although the multicomponent flows exist more probably below the heated plate in reality, present study concentrates on the single phase flow in a first step prior to investigating the complicated multicomponent thermal hydraulic phenomena. In the present study, in order to get a better understanding for the natural convection characteristics below the heated plate, the velocity and temperature are measured by LDA(Laser Doppler Anemometry) and thermocouples, respectively. And How fields are visualized by taking pictures of the How region with suspended particles. The results show the occurrence of a very effective circulation of the fluid in the whole How area as the heater and coolers are put into operation. In the remote region below the heated plate the new is nearly stagnant, and a remarkable temperature stratification can be observed with very thin thermal boundary. Analytical predictions using the FLUTAN code show a reasonable matching of the measured velocity fields.

  • PDF

MARSUPIALIZATION FOR TREATMENT OF ORAL RANULA (조대술에 의한 하마종의 치료)

  • Kang, Dong-Gyun;Hwang, Kyung-Mun;Kim, Eun-Jung;Kim, Hyun-Jung;Kim, Young-Jin;Nam, Soon-Hyeun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.1
    • /
    • pp.139-145
    • /
    • 2006
  • Ranula is a mucocele which occurs at the mouth floor and is mostly related to sublingual gland. In other words ranula is definded as a pseudocyst which occurs as the secretion duct of sublingual gland is destructed there as the saliva from the secretion duct flows out and retention in the soft tissue. The cause of ranula is destruction or obstruction of the duct. The clinical findings of ranula is a painless, unilateral bluish transparent swelling around the frenum and shows fluctuation when palpated. Histological finding represent a formation of cavity inside the connective tissue, but a pseudo-cyst can be seen which the wall of the cyst is composed of granulation tissue rather than epithelial cells. The first treatment of ranula can be considered as marsupialization. which induces the inner wall of the Ranula to be a part of oral mucosa. This case report shows a treatment of marsupialization with gauze packing in a young patient representing a clinical finding of characteristic ranula.

  • PDF

Flow Visualization in the Branching Duct by Using Particle Imaging Velocimetry (입자영상유속계를 이용한 분기관내 유동가시화)

  • No, Hyeong-Un;Seo, Sang-Ho;Yu, Sang-Sin
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • The objective of this study is to analyse the flow field in the branching duct by visualizing the flow phenomena using the PIV system. A bifurcation model is fabricated with transparent acrylic resin to visualize the whole flow field with the PIV system. Water was used as the working fluid and the conifer powder as the tracer particles. The single-frame and two-frame methods of the PIV system and 2-frame of the grey level correlation method are applied to obtain the velocity vectors from the images captured in the flow filed. The velocity distributions in a lid-driven cavity flow are compared with the so-called standard experimental data, which was obtained from by 4-frame method in order to validate experimental results of the PIV measurements. The flow patterns of a Newtonian fluid in a branching duct were successfully visualized by using the PIV system and the sub-pixel and the area interpolation method were used to obtain the final velocity vectors. The velocity vectors obtained from the PIV system are in good agreement with the numerical results of the 3-dimensional branch flow. The results of numerical analyses and the PIV experiments for the three-dimensional flows in the branch ing duct show the recirculation zone distal to the branching point and the sizes of the recirculation length and height of the tow different methods are in good agreement.

  • PDF

Studies on the phrases of Yellow Emperor's internal classic(黃帝內經) for the physiology on the spleen and stomach (비위생리(脾胃生理)에 수용(授用)되는 황제내경(黃帝內經) 어구(語句)에 관(關)한 연구(硏究))

  • Won, Jin-Hui
    • The Journal of Korean Medicine
    • /
    • v.16 no.2 s.30
    • /
    • pp.453-489
    • /
    • 1995
  • The research of the phrases related with physiology of stomach and spleen in the contents of Huang Di Nei Jing(黃帝內經) known as the Bible of oriental medicine will make a contribution to a deep understanding of disease of stomach and spleen and a proper clinical diagnosis and treatment of them. In this research of the most appropriate glosses recorded nine kinds of representative medical books including Huang Di Nei Jing Somoon(黃帝內經素問) of Wang Bing(王氷) were picked out: The summaries of the selected contents are as follows: 1. The word 'saliva(涎)' in 'the spleen controls saliva(脾爲涎)' can be viewed as a generic term referring to oral cavity secretion gland as well as the secretion fluid of salivary gland. 2. The phases 'a large reservoir(太倉)', barn organs', 'a reserboir of food stuff', 'a stomach as the market(胃爲之市)', etc mean the function of stomach to receive food(胃主受納). 3. The phase 'generation of five tastes(五味出焉)' means both 'the function of stomach to transform food into chyme(胃主腐熟)' and 'the channelling function of spleen.(脾主運化)' 4. The flowing of the food-Qi(食氣) into stomach brings about spreading Jung(精) into liver and then percolating Jung(精) flow into channel. The channel-Qi(脈氣) flows into lung through channel. As a result, all kinds of channels gather together in lung and Jung(精) is sent into skin and hair. The assembly of Jung(精) with skins and channels moves Qi(氣) into fu-organ and so jung(精) and mental activity(神明) in fu-organ(府) come to be in four organs(四臟). Then if Qi(氣) comes back to power balance unit(權衡) being in the state of equilibrium(權衡以平), the hole of Qi(氣口) comes to determine the matter of life and death through achieving Chun-quan-chi(-寸-關-尺). The above mentioned phrases means the digestion, asorption and transmission of food. When food is taken in stomach, Jung-Qi(精氣) comes to be over flowed upward into spleen, back into lung, finally downward into bladders through water-conduit(水道) controlled by lung. When water- Jung(水精) radiates into whole body with channels of five organs(五臟), both of them fit together with and yin-yang(陰-陽). Therefore, the grasping of the rise and decline of yin-yang(陰C-陽) is necessary to consult patients. The above mentioned phrases is properly viewed to designate the asorption, transmission and excretion of food. 5. Spleen controls flesh(脾之合肉也), the state of spleen is known by human lips, and what this means is that liver plays functions of spread and expansion(肝主疏泄). 6. The phrase 'Jung Jung'((中精)) in 'gallbladder dominates Jung jung(膽主中精)', which in one of the specific expression of 'liver plays functions of spread and expansion(肝主疏泄). 7. It is right that the phase 'The eleven organs in all are determined by gallbladder'(凡十,一臟取決於膽也) is correctly paraphrased as 'only one of ten organs, spleen, is determined by gallbladder'.(凡十,一臟取決於膽也), 8. The small intestine is an organ. which receives the materials digested and sends them out. This means that the function of transforming materials(化物) factually refers to that of separating clearity and blur(泌別淸濁). And it is also thought to have the function of ascending clearity and descending blur(升淸降濁), 9. A large intestine is a transmitting organ(傳導之官) from which a change comes out(變化出焉). the phrase 'change'(變化) in this sentence means both the intake of water and nutrition and the formation procedure of stool through excretion of mucocele.

  • PDF