• 제목/요약/키워드: cavitation.

검색결과 1,229건 처리시간 0.029초

Study of Cavitation Instabilities in Double-Suction Centrifugal Pump

  • Hatano, Shinya;Kang, Donghyuk;Kagawa, Shusaku;Nohmi, Motohiko;Yokota, Kazuhiko
    • International Journal of Fluid Machinery and Systems
    • /
    • 제7권3호
    • /
    • pp.94-100
    • /
    • 2014
  • In double-suction centrifugal pumps, it was found that cavitation instabilities occur with vibration and a periodic chugging noise. The present study attempts to identify cavitation instabilities in the double-suction centrifugal pump by the experiment and Computational Fluid Dynamics (CFD). Cavitation instabilities in the tested pump were classified into three types of instabilities. The first one, in a range of cavitation number higher than breakdown cavitation number, is cavitation surge with a violent pressure oscillation. The second one, in a range of cavitation number higher than the cavitation number of cavitation surge, is considered to be rotating cavitation and causes the pressure oscillation due to the interaction of rotating cavitation with the impeller. Last one, in a range of cavitation number higher than the cavitation number of rotating cavitation, is considered to be a surge type instability.

Dynamic Response of Blade Surface Cavitation

  • Toyoshima, Masakazu;Sakaguchi, Kimiya;Tsubouchi, Kota;Horiguchi, Hironori;Sugiyama, Kazuyasu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권2호
    • /
    • pp.160-168
    • /
    • 2016
  • In high speed turbopumps, cavitation occurs and often causes the flow instabilities such as cavitation surge and rotating cavitation. The occurrence of these cavitation instabilities is considered to relate to dynamic characteristics of the cavitation, which are modelled using a cavitation compliance and a mass flow gain factor. Various types of cavitation such as a blade surface cavitation, a tip leakage vortex cavitation, and a backflow vortex cavitation occur at the same time in the inducer and the dynamic characteristics of each cavitation have not been clarified yet in experiments. Focusing on the blade surface cavitation as one of fundamental cavitation, we investigated the dynamic characteristics of the blade surface cavitation on a flat plate hydrofoil in experiments in the present study.

노즐 오리피스 형상에 따른 Discharge Coefficient와 Cavitation에 관한 실험적 연구 (Experimental Study of Discharge Coefficient and Cavitation for Different Nozzle Geometries)

  • 김성열;구건우;홍정구;이충원
    • 대한기계학회논문집B
    • /
    • 제34권10호
    • /
    • pp.933-939
    • /
    • 2010
  • 본 연구는 타원형 노즐과 원형 노즐 내부에서 발생되는 cavitation의 발생 및 성장을 실험적으로 관찰하였다. 원형 노즐과 타원형 노즐의 cavitation 특성을 가시화 하기위해 투명한 아크릴로 노즐을 제작하였다. 실험에 사용된 노즐들은 같은 단면적으로 제작되었으며, 타원형 노즐의 경우 형상비(a/b)를 다르게 하였다. 분사압력의 증가에 따라 노즐내부 유동은 no cavitation, cavitation, hydraulic flip 영역으로 나뉘어졌다. 노즐의 형상에 상관없이 no cavitation과 cavitation 영역에서는 분사압력의 증가에 따라 유량은 증가하며, 유출계수는 감소하는 경향을 나타냈다. 그러나 hydraulic flip 영역에서의 유량계수는 일정한 값을 나타냈다. 타원형 노즐은 원형 노즐에 비해 높은 cavitation number에서 cavitation이 성장, 발달하였다. 특히 타원형 노즐에서는 장축의 cavitation length가 단축보다 길게 나타났다.

Backflow Vortex Cavitation and Its Effects on Cavitation Instabilities

  • Yamamoto, Kazuyoshi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권1호
    • /
    • pp.40-54
    • /
    • 2009
  • Cavitation instabilities in turbo-machinery such as cavitation surge and rotating cavitation are usually explained by the quasi-steady characteristics of cavitation, mass flow gain factor and cavitation compliance. However, there are certain cases when it is required to take account of unsteady characteristics. As an example of such cases, cavitation surge in industrial centrifugal pump caused by backflow vortex cavitation is presented and the importance of the phase delay of backflow vortex cavitation is clarified. First, fundamental characteristics of backflow vortex structure is shown followed by detailed discussions on the energy transfer under cavitation surge in the centrifugal pump. Then, the dynamics of backflow is discussed to explain a large phase lag observed in the experiments with the centrifugal pump.

Numerical Analysis of the Influence of Acceleration on Cavitation Instabilities that arise in Cascade

  • Iga, Yuka;Konno, Tasuku
    • International Journal of Fluid Machinery and Systems
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 2012
  • In the turbopump inducer of a liquid propellant rocket engine, cavitation is affected by acceleration that occurs during an actual launch sequence. Since cavitation instabilities such as rotating cavitations and cavitation surges are suppressed during launch, it is difficult to obtain data on the influence of acceleration on cavitation instabilities. Therefore, as a fundamental investigation, in the present study, a three-blade cyclic cascade is simulated numerically in order to investigate the influence of acceleration on time-averaged and unsteady characteristics of cavitation that arise in cascade. Several cases of acceleration in the axial direction of the cascade, including accelerations in the upstream and downstream directions, are considered. The numerical results reveal that cavity volume is suppressed in low cavitation number condition and cavitation performance increases as a result of high acceleration in the axial-downstream direction, also, the inverse tendency is observed in the axial-upstream acceleration. Then, the regions in which the individual cavitation instabilities occur shift slightly to a low-cavitation-number region as the acceleration increases downstream. In addition, in a downstream acceleration field, neither sub-synchronous rotating cavitation nor rotating-stall cavitation are observed. On the other hand, rotating-stall cavitation occurs in a relatively higher-cavitation-number region in an upstream acceleration field. Then, acceleration downstream is robust against cavitation instabilities, whereas cavitation instabilities easily occur in the case of acceleration upstream. Additionally, comparison with the Froude number under the actual launch conditions of a Japanese liquid propellant rocket reveals that the cavitation performance will not be affected by the acceleration under the current launch conditions.

3차원 날개의 캐비테이션 소음 계측시험 (Experimental Study on the Cavitation Noise of a Hydrofoil)

  • 이승재;서종수;한재문
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.111-118
    • /
    • 2007
  • In order to investigate the noise characteristics of the different caviation, noise measurements were carried out in a large cavitation tunnel of the Samsuug Ship Model Basin(SSMB). The noise measurements for a 3-dimensional hydrofoil were carried out at the angle of attack of $12^{\circ}$ and $16^{\circ}$ according to the decrease in cavitation number. It is exhibited that sound pressure level(SPL) increased sharply with cavitation inception. The frequency of the noise induced by sheet cavitation was higher than that of tip vortex cavitation in the phase of cavitation inception. Within the range of the high frequency, in the case of fully developed cavitation, sheet cavitation noise was significantly increased in sound pressure level compared with tip vortex cavitation noise. In this study, the noise characteristics of the different cavitation types were considered experimentally and would be utilized as a basis for the analysis of propeller cavitation noise.

단일 거칠기 요소가 벤투리 캐비테이션에 미치는 영향 (Effects of a single roughness element on Venturi cavitation)

  • 황종빈;신이수;김주하
    • 한국가시화정보학회지
    • /
    • 제21권1호
    • /
    • pp.57-66
    • /
    • 2023
  • In this study, we investigate the effects of a single roughness element on Venturi cavitation. The single roughness element of hemispherical shape is installed at the throat inlet of a Venturi tube. Since the wake behind the roughness element induces an additional pressure drop, cavitation inception occurs at a higher Cavitation number for the Venturi model with the single roughness element than for the Venturi model with no roughness. Cavitation bubbles form along the wake of the roughness element and lengthen in the streamwise direction as the Cavitation number decreases, forming a longitudinal cavitation. With a further decrease in the Cavitation number, the longitudinal cavitation bubble merges with the sheet cavitation initiated from the exit edge of the Venturi tube throat, followed by the shedding of cloud cavitation. The merging of the longitudinal cavitation and sheet cavitation is accompanied by a sudden decrease in the discharge coefficient and an increase in the pressure loss coefficient as it chokes the flow inside the Venturi tube.

Cavitation studies on axi-symmetric underwater body with pumpjet propulsor in cavitation tunnel

  • Suryanarayana, Ch.;Satyanarayana, B.;Ramji, K.;Rao, M. Nageswara
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제2권4호
    • /
    • pp.185-194
    • /
    • 2010
  • A pumpjet propulsor (PJP) was designed for an underwater body (UWB) with axi-symmetric configuration. Its performance was predicted through CFD study and models were manufactured. The propulsor design was evaluated for its propulsion characteristics through model tests conducted in a Wind Tunnel (WT). In the concluding part of the study, evaluation of the cavitation performance of the pumpjet was undertaken in a cavitation tunnel (CT). In order to assess the cavitation free operation speeds and depths of the body, cavitation tests of the PJP were carried out in behind condition to determine the inception cavitation numbers for rotor, stator and cowl. The model test results obtained were corrected for full scale Reynolds number and subsequently analyzed for cavitation inception speeds at different operating depths. From model tests it was also found that the cavitation inception of the rotor takes place on the tip face side at higher advance ratios and cavitation shifts towards the suction side as the RPS increases whereas the stator and cowl are free from cavitation.

디젤기관 실린더라이너의 진동캐비테이션 손상 억제에 관한 연구 (A Study on the Damage Suppression of Diesel Engine Cylinder Liners under Vibratory Cavitation)

  • 정기철;황재호;임우조
    • 수산해양교육연구
    • /
    • 제10권2호
    • /
    • pp.226-238
    • /
    • 1998
  • With the advent of high speed and high output diesel engines, cavitation erosion-corrosion of wet cylinder liners is one of the most prevalent types of failure. The cavitation erosion-corrosion at cylinder liners in water cooled diesel engines is considered to be to the collapse of cavitation bubbles attributed to the cylinder liner vibration. To suppress cavitation damage in cylinder liner, the addition of an inhibitor would be more general method and innovations such as the improvement in the geometric design of the equipment or the selection of suitably resistant construction materials are necessary. In this study, photomicrographs from vibratory facility cavitation specimens and from an eroded liner of a field diesel engine are compared. The behavior of cavitation bubbles grown in fluid is observed under vibration conditions by taking direct photographs with high speed camera. In order to determine the contributions of pure cavitation erosion and of pure corrosion to the total cavitation damage are be studied by following an experimental programme which includes three types of test: (1)pure cavitation erosion test, (2)pure corrosion test, and (1)cavitation erosion-corrosion test. Also cavitation damage under vibratory cavitation is reduced by using flow in tap water.

  • PDF

소산이 고려된 보오텍스 모델과 버블 이론을 이용한 수중익 날개 끝 보오텍스 캐비테이션 거동 및 소음의 수치적 해석 (Numerical Analysis of Tip Vortex Cavitation Behavior and Noise on Hydrofoil using Dissipation Vortex Model and Bubble Theory)

  • 박광근;설한신;이수갑
    • 대한조선학회논문집
    • /
    • 제43권2호
    • /
    • pp.177-185
    • /
    • 2006
  • Cavitation is the dominant noise source of the marine vehicle. Of the various types of cavitation , tip vortex cavitation is the first appearance type of marine propeller cavitation and it generates high frequency noise. In this study, tip vortex cavitation behavior and noise are numerically investigated. A numerical scheme using Eulerian flow field computation and Lagrangian particle trace approach is applied to simulate the tip vortex cavitation on the hydrofoil. Vortex flow field is simulated by combined Moore and Saffman's vortex core radius equation and Sculley vortex model. Tip vortex cavitation behavior is analyzed by coupled Rayleigh-Plesset equation and trajectory equation. The cavitation nuclei are distributed and released in the vortex flow result. Vortex cavitation trajectories and radius variations are computed according to nuclei initial size. Noise is analyzed using time dependent cavitation bubble position and radius data. This study may lay the foundation for future work on vortex cavitation study and it will provide a basis for proper underwater propeller noise control strategies.