• 제목/요약/키워드: caveolin-2

검색결과 33건 처리시간 0.027초

흰쥐 해마신경세포 가지돌기의 lipid rafts 및 caveolae에서 N-acetylglucosamine kinase의 표현 (N-Acetylglucosamine Kinase is Localized to Dendritic Lipid Rafts and Caveolae of Rat Hippocampal Neurons)

  • 문일수
    • 생명과학회지
    • /
    • 제16권6호
    • /
    • pp.955-959
    • /
    • 2006
  • 단백질의 serine 및 threonine 잔기에 O-linked N-acetylglucosamine (O-GlcNAc)의 수식은 핵단백질과 세포질 단백질의 주요 조절인자로 부각되고 있다. 본 연구에서는 GlcNAc를 인산화시켜 GlcNAc 6-phosphate로 만드는 GlcNAc kinase (NAGK, EC2.7.1.59)의 세포내 표현을 면역화학적 방법으로 조사하였다. 배양한 해미신경세포에서 NAGK는 가지돌기를 따라 점박이(punctae)를 형성하였으며, 이 점박이들은 caveolin-1 혹은 flotillin 항체에도 염색이 되었다. 이들은 각각 caveolac와 lipid raft의 표지단백질이기 때문에 본 연구결과는 NAGK가 세포막의 이러한 특수 미세부분(microdomain)에 존재함을 의미하며, 이 미세부분에서 아직 알려지지 않은 어떤 기능을 할 것을 시사한다.

A familial case of limb-girdle muscular dystrophy with CAV3 mutation

  • Lee, Seungbok;Jang, Sesong;Shim, Youngkyu;Kim, Woo Joong;Kim, Soo Yeon;Cho, Anna;Kim, Hunmin;Kim, Jong-Il;Lim, Byung Chan;Hwang, Hee;Choi, Jieun;Kim, Ki Joong;Chae, Jong Hee
    • Journal of Genetic Medicine
    • /
    • 제16권2호
    • /
    • pp.67-70
    • /
    • 2019
  • Limb-girdle muscular dystrophy (LGMD) is a group of muscular dystrophies that has extremely heterogeneous clinical features and genetic background. The caveolin-3 gene (CAV3) is one of the causative genes. LGMD appears as a clinical continuum, from isolated skeletal muscle involvement to long QT syndrome. Here we report two patients without apparent muscle weakness in a family with CAV3 mutation. A 7-month-old Korean boy visited our muscle clinic because of an incidental finding of elevated serum creatine kinase (CK) concentration (680 IU/L, reference range, 20-270 IU/L) without clinical symptoms. The patient was born after an uneventful pregnancy and showed normal developmental milestones. He developed pseudohypertrophy of his calf muscle during the follow-up. We obtained a muscle biopsy at age 14 months, which showed size variations and degenerating/regenerating myofibers with endomysial fibrosis and immunohistochemical evidence of normal dystrophin. Under the impression of LGMD, we performed target panel sequencing and identified a heterozygous in-frame mutation of CAV3, c.307_312delGTGGTG (p.Val103_Val104del). Immunohistochemical staining of muscle indicated complete loss of caveolin-3 compared with normal control muscle, which supported the variant's pathogenicity. We performed segregation analysis and found that the patient's mother had the same variant with elevated serum CK level (972 IU/L). We report on autosomal dominant familial caveolinopathy caused by a pathogenic variant in CAV3, which was asymptomatic until the fourth decade. This case highlights the utility of next generation sequencing in the diagnosis of muscular dystrophies and the additive role of muscle biopsy to confirm the variants.

miR-3074-3p promotes myoblast differentiation by targeting Cav1

  • Lee, Bora;Shin, Yeo Jin;Lee, Seung-Min;Son, Young Hoon;Yang, Yong Ryoul;Lee, Kwang-Pyo
    • BMB Reports
    • /
    • 제53권5호
    • /
    • pp.278-283
    • /
    • 2020
  • Muscle fibers are generally formed as multinucleated fibers that are differentiated from myoblasts. Several reports have identified transcription factors and proteins involved in the process of muscle differentiation, but the roles of microRNAs (miRNAs) in myogenesis remain unclear. Here, comparative analysis of the miRNA expression profiles in mouse myoblasts and gastrocnemius (GA) muscle uncovered miR-3074-3p as a novel miRNA showing markedly reduced expression in fully differentiated adult skeletal muscle. Interestingly, elevating miR-3074-3p promoted myogenesis in C2C12 cells, primary myoblasts, and HSMMs, resulting in increased mRNA expression of myogenic makers such as Myog and MyHC. Using a target prediction program, we identified Caveolin-1 (Cav1) as a target mRNA of miR-3074-3p and verified that miR-3074-3p directly interacts with the 3' untranslated region (UTR) of Cav1 mRNA. Consistent with the findings in miR-3074-3p-overexpressing myoblasts, knockdown of Cav1 promoted myogenesis in C2C12 cells and HSMMs. Taken together, our results suggest that miR-3074-3p acts a positive regulator of myogenic differentiation by targeting Cav1.

Mechanistic Analysis of Taxol-induced Multidrug Resistance in an Ovarian Cancer Cell Line

  • Wang, Ning-Ning;Zhao, Li-Jun;Wu, Li-Nan;He, Ming-Feng;Qu, Jun-Wei;Zhao, Yi-Bing;Zhao, Wan-Zhou;Li, Jie-Shou;Wang, Jin-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.4983-4988
    • /
    • 2013
  • Objectives: To establish a taxol-resistant cell line of human ovarian carcinoma (A2780/Taxol) and investigate its biological features. Methods: The drug-resistant cell line (A2780/Taxol) was established by continuous stepwise selection with increasing concentrations of Taxol. Cell morphology was assessed by microscopy and growth curves were generated with in vitro and in vivo tumor xenograft models. With rhodamine123 (Rh123) assays, cell cycle distribution and the apoptotic rate were analyzed by flow cytometry (FCM). Drug resistance-related and signal associated proteins, including P-gp, MRPs, caveolin-1, PKC-${\alpha}$, Akt, ERK1/2, were detected by Western blotting. Results: A2780/Taxol cells were established with stable resistance to taxol. The drug resistance index (RI) was 430.7. Cross-resistance to other drugs was also shown, but there was no significant change to radioresistance. Compared with parental cells, A2780/Taxol cells were significantly heteromorphous, with a significant delay in population doubling time and reduced uptake of Rh123 (p<0.01). In vivo, tumor take by A2780 cells was 80%, and tumor volume increased gradually. In contrast, with A2780/Taxol cells in xenograft models there was no tumor development. FCM analysis revealed that A2780/Taxol cells had a higher percentage of G0/G1 and lower S phase, but no changes of G2 phase and the apoptosis rate. Expression of P-gp, MRP1, MRP2, BCRP, LRP, caveolin-1, PKC-${\alpha}$, Phospho-ERK1/2 and Phospho-JNK protein was significantly up-regulated, while Akt and p38 MARK protein expression was not changed in A2780/Taxol cells. Conclusion: The A2780/Taxol cell line is an ideal model to investigate the mechanism of muti-drug resistance related to overexpression of drug-resistance associated proteins and activation of the PKC-${\alpha}/ERK$ (JNK) signaling pathway.

Mitochondrial oxidative phosphorylation complexes exist in the sarcolemma of skeletal muscle

  • Lee, Hyun;Kim, Seung-Hyeob;Lee, Jae-Seon;Yang, Yun-Hee;Nam, Jwa-Min;Kim, Bong-Woo;Ko, Young-Gyu
    • BMB Reports
    • /
    • 제49권2호
    • /
    • pp.116-121
    • /
    • 2016
  • Although proteomic analyses have revealed the presence of mitochondrial oxidative phosphorylation (OXPHOS) proteins in the plasma membrane, there have been no in-depth evaluations of the presence or function of OXPHOS I-V in the plasma membrane. Here, we demonstrate the in situ localization of OXPHOS I-V complexes to the sarcolemma of skeletal muscle by immunofluorescence and immunohistochemistry. A portion of the OXPHOS I-V complex proteins was not co-stained with MitoTracker but co-localized with caveolin-3 in the sarcolemma of mouse gastrocnemius. Mitochondrial matrix-facing OXPHOS complex subunits were ectopically expressed in the sarcolemma of the non-permeabilized muscle fibers and C2C12 myotubes. The sarcolemmal localization of cytochrome c was also observed from mouse gastrocnemius muscles and C2C12 myotubes, as determined by confocal and total internal resonance fluorescence (TIRF) microscopy. Based on these data, we conclude that a portion of OXPHOS complexes is localized in the sarcolemma of skeletal muscle and may have non-canonical functions.

Ginsenosides: potential therapeutic source for fibrosis-associated human diseases

  • Li, Xiaobing;Mo, Nan;Li, Zhenzhen
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.386-398
    • /
    • 2020
  • Tissue fibrosis is an eventual pathologic change of numerous chronic illnesses, which is characterized by resident fibroblasts differentiation into myofibroblasts during inflammation, coupled with excessive extracellular matrix deposition in tissues, ultimately leading to failure of normal organ function. Now, there are many mechanistic insights into the pathogenesis of tissue fibrosis, which facilitate the discovery of effective antifibrotic drugs. Moreover, many chronic diseases remain a significant clinical unmet need. For the past five years, many research works have undoubtedly addressed the functional dependency of ginsenosides in different types of fibrosis and the successful remission in various animal models treated with ginsenosides. Caveolin-1, interleukin, thrombospondin-1 (TSP-1), liver X receptors (LXRs), Nrf2, microRNA-27b, PPARδ-STAT3, liver kinase B1 (LKB1)-AMPK, and TGF-β1/Smads are potential therapy targeting using ginsenosides. Ginsenosides can play a targeting role and suppress chronic inflammatory response, collagen deposition, and epitheliale-mesenchymal transition (EMT), as well as myofibroblast activation to attenuate fibrosis. In this report, our aim was to focus on the therapeutic prospects of ginsenosides in fibrosis-related human diseases making use of results acquired from various animal models. These findings should provide important therapeutic clues and strategies for the exploration of new drugs for fibrosis treatment.

Muscle differentiation induced up-regulation of calcium-related gene expression in quail myoblasts

  • Park, Jeong-Woong;Lee, Jeong Hyo;Kim, Seo Woo;Han, Ji Seon;Kang, Kyung Soo;Kim, Sung-Jo;Park, Tae Sub
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권9호
    • /
    • pp.1507-1515
    • /
    • 2018
  • Objective: In the poultry industry, the most important economic traits are meat quality and carcass yield. Thus, many studies were conducted to investigate the regulatory pathways during muscle differentiation. To gain insight of muscle differentiation mechanism during growth period, we identified and validated calcium-related genes which were highly expressed during muscle differentiation through mRNA sequencing analysis. Methods: We conducted next-generation-sequencing (NGS) analysis of mRNA from undifferentiated QM7 cells and differentiated QM7 cells (day 1 to day 3 of differentiation periods). Subsequently, we obtained calcium related genes related to muscle differentiation process and examined the expression patterns by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Results: Through RNA sequencing analysis, we found that the transcription levels of six genes (troponin C1, slow skeletal and cardiac type [TNNC1], myosin light chain 1 [MYL1], MYL3, phospholamban [PLN], caveolin 3 [CAV3], and calsequestrin 2 [CASQ2]) particularly related to calcium regulation were gradually increased according to days of myotube differentiation. Subsequently, we validated the expression patterns of calcium-related genes in quail myoblasts. These results indicated that TNNC1, MYL1, MYL3, PLN, CAV3, CASQ2 responded to differentiation and growth performance in quail muscle. Conclusion: These results indicated that calcium regulation might play a critical role in muscle differentiation. Thus, these findings suggest that further studies would be warranted to investigate the role of calcium ion in muscle differentiation and could provide a useful biomarker for muscle differentiation and growth.

Carbachol-induced Phosphorylation of Phospholipase D1 through Protein Kinase C is required for the Activation in COS-7 cells

  • Lee, Byoung-Dae;Kim, Yong;Han, Jung-Min;Suh, Pann-Ghill;Ryu, Sung-Ho
    • BMB Reports
    • /
    • 제34권2호
    • /
    • pp.182-187
    • /
    • 2001
  • Phospholiapse D (PLD), and phosphatidic acid generated by it, have been implicated in receptor-mediated intracellular signaling. Carbachol (CCh) is known to activate PLD1, and protein kinase C (PKC) is known to mediate in this signaling pathway In recent reports (Kim et al., 1999b; Kim et al., 2000), we published our observations of the direct phosphorylation of PLD1 by PKC and we described the phosphorylation-dependent regulation of PLD1 activity. In this study, we investigated the phasphorylation and compartmentalization of PLD1 in terms of CCh signaling in M3 muscarinic receptor (M3R)-expressing COS-7 cells. CCh treatment of COS-7 cells transiently coexpressing PLD1 and M3R stimulated PLD1 activity and induced direct phosphorylation of PLD1 by PKC. The CCh-induced activation and phosphorylation of PLD1 was completely blocked upon pretreatment of the cells with PKC-specific inhibitors. We looked at the localization of the PLD1 phosphorylation by PKC and found that PLD1 was mainly located in the caveolin-enriched membrane (CEM) fraction. Based on these results, we conclude that CCh induces the activation and phosphorylation of PLD1 via PKC and that the phosphorylation of PLD1 occurs in caveolae.

  • PDF

Gene Expression Profiling of Non-Hodgkin Lymphomas

  • Zekri, Abdel-Rahman Nabawy;Hassan, Zeinab Korany;Bahnassy, Abeer Ahmed;Eldahshan, Dina Hassan;El-Rouby, Mahmoud Nour Eldin;Kamel, Mahmoud Mohamed;Hafez, Mohamed Mahmoud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권7호
    • /
    • pp.4393-4398
    • /
    • 2013
  • Background: Chromosomal translocations are genetic aberrations associated with specific non-Hodgkin lymphoma (NHL) subtypes. This study investigated the differential gene expression profile of Egyptian NHL cases based on a microarray approach. Materials and Methods: The study included tissue samples from 40 NHL patients and 20 normal lymph nodes used as controls. Total RNA was extracted and used for cDNA microarray assays. The quantitative real time polymerase chain reaction was used to identify the aberrantly expressed genes in cancer. Results: Significant associations of 8 up-regulated and 4 down-regulated genes with NHL were observed. Aberrant expression of a new group of genes not reported previously was apparent, including down-regulated NAG14 protein, 3 beta hydroxy-delta 5-c27 steroid oxi-reductase, oxi-glutarate dehydrogenase (lipo-amide), immunoglobulin lambda like polypeptide 3, protein kinase x linked, Hmt1, and caveolin 2 Tetra protein. The up-regulated genes were Rb binding protein 5, DKFZP586J1624 protein, protein kinase inhibitor gamma, zinc finger protein 3, choline ethanolamine phospho-transferase CEPT1, protein phosphatase, and histone deacetylase-3. Conclusions: This study revealed that new differentially expressed genes that may be markers for NHL patients and individuals who are at high risk for cancer development.

지방세포의 Lipid Raft/Caveolae에서 인슐린의 분자적 작용기전 (Molecular Events of Insulin Action Occur at Lipid Raft/Caveolae in Adipocytes)

  • 배순식;윤성지;김은경;김치대;최장현;서판길
    • 생명과학회지
    • /
    • 제17권1호
    • /
    • pp.56-63
    • /
    • 2007
  • 인슐린은 지방세포 또는 근육세포에서 포도당 흡수 조절 통로단백질이 함유되어 있는 소포제를 세포막으로의 이동을 촉진시킨다. 우리는 여기서 지방세포로의 분화는 인슐린에 의한 포도당 흡수에 대한 반응이 증가됨을 보였다. 반면에 지방세포로의 분화는 PDGF에 의한 포도당 흡수 반응이 감소됨을 보였다. 인슐린 수용체나 caveolae는 지방세포로의 분화과정 동안 발현이 증가된다. 또한 지방세포로의 분화는 인슐린에 의한 Akt의 활성을 증가시켰다. 하지만 PDGF에 의한 Akt의 활성은 크게 감소하였다. 하지만 인슐린은 지방세포 또는 섬유아 전구세포에서 ERK의 활성을 유도하지 않았다. PDGF에 의한 ERK 활성 또한 지방세포로의 분화과정에 따라 감소하였다. P13K의 저해제인 LY294002는 지방세포 뿐만 아니라 섬유아 전구세포에서 인슐린에 의한 포도당 흡수를 저해하였다. 마지막으로 인슐린 수용체, Akt, SHIP2, p85등이 lipid raft/caveolae에 존재함을 확인하였고 인슐린에 의해 이런 단백질들이 lipid raft/caveolae로 이동함을 관찰하였다. 이런 결과를 토대로 lipid raft는 포도당 홉수를 위한 인슐린의 기능적 작용을 하는데 매우 중요한 환경을 제공함을 주장한다.