• Title/Summary/Keyword: cautious blasting

Search Result 16, Processing Time 0.023 seconds

A Study on the Characteristics of Blasting Vibration and Breaker Vibration by Rock Excavation (암반굴착에 따른 발파진동과 브레이커진동의 특성에 관한 연구)

  • Lim, Han-Uk;Park, Hyeon-Seong
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.107-117
    • /
    • 2002
  • The blast works for open cuts and underground constructions near urban areas have recently increased complaint of ground vibration, air blast and fly rock. In order to reduce these problems, it is necessary to develop more cautious blasting, or non-blast excavation methods by mechanical power. For these breaker workings instead of blast are sometimes adopted. To compare the characteristics of blast vibration with breaker vibration, the level, range of frequency and spectrum amplifications of each vibration were studied.

  • PDF

On the Study of Blasting Vibration, Sound by Measuring Gage Influence to Exist Crack in 154kV Daeshin Electric Cable Tunnel (154kV 대신 S/S인출 전력구 시험발파 패턴 및 진동, 소음 계측에 의한 기존 CRACK에 미치는 영향 연구)

  • 강대우;박태원
    • Explosives and Blasting
    • /
    • v.16 no.3
    • /
    • pp.25-34
    • /
    • 1998
  • This area is covered in Andesite of high compression strength and located in PUSAN SEO-KU. There are many old houses around shaft site. So, we must have a cautious blasting operation. A total of 40 blasts were test at DAE-SHIN Shaft site to study the magnitude and frequency characterization of blast-induced vibration. The effect of viblating frequency on structual damage and site-specific scaling to define th empirical equations were also discussed. The result can be summarized as follows: 1. Some empirical equations were obtained. $V=K\{{\frac{D}{W}}1/3\}^{-n}$ where the values for n and K are estimated to be -1.407 to -2.202 and 643.3489 to 7283.2104 respectively. 2. Dominant frequencies at short distance are in the range of about 75.0 to 91.8 Hz, with some exceptions of about 50Hz, Frequencies observed at long distance are in the range of 10 to 2Hz. It is apparent the shift of dominant frequency down to lower levels at long distance.

  • PDF

A study on characteristics of blast vibration waveform by vibration time history analysis (진동이력분석을 응용한 발파 진동파형의 특성에 관한 연구)

  • 김진수;임한욱
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.36-47
    • /
    • 1999
  • For cautious controlled blasting, it is necessary to understand characteristics of the blasting vibration. In this study, a series of tests were carried out to investigate the several characteristics of blasting vibration waveform by vibration time history analysis. Separation between impulse vibration and free vibration from blasting vibration, duration time, effects of overlap of free vibration upon the level of vibration and changes of waveform according to increase of charge weight per delay etc. were studied with waveform analysis.

  • PDF

A Study on the effective Oscillation Characteristics of the Constructions of Blasting Operations in Seaside (수중 발파시 인근 구조물에 미치는 진동의 영향 연구)

  • Lee, Sin;Kang, Dae-Woo;Park, Hak-Bong
    • Explosives and Blasting
    • /
    • v.19 no.1
    • /
    • pp.71-84
    • /
    • 2001
  • Korean peninsula has the most mountainous areas such as mountains and hilly country, and it is surrounded by the sea on all sides but one. In this respect, a large scaled construction works have frequently been conducted. However, it is not easy to porform a large scale blasting work without giving any harm to houses or facilities nationwide. Therefore, blasting work becomes more closely related to maintenance thing due to the development of the downtown or a large structure for key facilities. Many researches on blast in the open space and tunnel blasting have been conducted. On the contrary, research on underwater blasting operations is comparatively scanty even though much more necessity of marine development is required. In this respect, this study aims to investigate the characteristics of underwater blasting operations and to make a comparative study with blast in the open space. As a result of examining into the characteristics during underwater blasting operations, the around oscillation in case of underwater blasting operations shows significantly low compared to that in case of blast in the open space, and this means that much more cautious altitude must be taken in designing underwater blasting operations compared to the design of blast In the open space. As a result of analysis on the difference between a square root and a cube root In the equation of estimating oscillations in the actual site, it is shown that it is shown to apply a square root for the estimation of oscillation at 60 meters in case of underwater blasting operations and at 22 meters case of general blast in the open space.

  • PDF

On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works. (노천굴착에서 발파진동의 크기를 감량 시키기 위한 정밀파실험식)

  • Huh Ginn
    • Explosives and Blasting
    • /
    • v.9 no.1
    • /
    • pp.3-13
    • /
    • 1991
  • The cautious blasting works had been used with emulsion explosion electric M/S delay caps. Drill depth was from 3m to 6m with Crawler Drill ${\phi}70mm$ on the calcalious sand stone (soft -modelate -semi hard Rock). The total numbers of test blast were 88. Scale distance were induced 15.52-60.32. It was applied to propagation Law in blasting vibration as follows. Propagtion Law in Blasting Vibration $V=K(\frac{D}{W^b})^n$ were V : Peak partical velocity(cm/sec) D : Distance between explosion and recording sites(m) W : Maximum charge per delay-period of eight milliseconds or more (kg) K : Ground transmission constant, empirically determind on the Rocks, Explosive and drilling pattern ets. b : Charge exponents n : Reduced exponents where the quantity $\frac{D}{W^b}$ is known as the scale distance. Above equation is worked by the U.S Bureau of Mines to determine peak particle velocity. The propagation Law can be catagorized in three groups. Cubic root Scaling charge per delay Square root Scaling of charge per delay Site-specific Scaling of charge Per delay Plots of peak particle velocity versus distoance were made on log-log coordinates. The data are grouped by test and P.P.V. The linear grouping of the data permits their representation by an equation of the form ; $V=K(\frac{D}{W^{\frac{1}{3}})^{-n}$ The value of K(41 or 124) and n(1.41 or 1.66) were determined for each set of data by the method of least squores. Statistical tests showed that a common slope, n, could be used for all data of a given components. Charge and reduction exponents carried out by multiple regressional analysis. It's divided into under loom over loom distance because the frequency is verified by the distance from blast site. Empirical equation of cautious blasting vibration is as follows. Over 30m ------- under l00m ${\cdots\cdots\cdots}{\;}41(D/sqrt[2]{W})^{-1.41}{\;}{\cdots\cdots\cdots\cdots\cdots}{\;}A$ Over 100m ${\cdots\cdots\cdots\cdots\cdots}{\;}121(D/sqrt[3]{W})^{-1.66}{\;}{\cdots\cdots\cdots\cdots\cdots}{\;}B$ where ; V is peak particle velocity In cm / sec D is distance in m and W, maximLlm charge weight per day in kg K value on the above equation has to be more specified for further understaring about the effect of explosives, Rock strength. And Drilling pattern on the vibration levels, it is necessary to carry out more tests.

  • PDF