• Title/Summary/Keyword: causal prediction

Search Result 69, Processing Time 0.024 seconds

Invariant causal prediction for time series data: Application to won dollar exchange rate data (시계열 자료에서 불변하는 인과성 탐색: 원-달러 환율 데이터에 적용)

  • Kim, Mijeong
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.837-848
    • /
    • 2021
  • Evaluating or predicting the effectiveness of economic policies is an important issue, but it is difficult to find an economic variable which causes a significant result because there are numerous variables that cannot be taken into account. A randomized controlled experiment is the best way to investigate causality, but it is not realistically possible to control through randomization and intervention in time series data such as macroeconomic data. Although some analysis methods have been proposed to find causality, the methods such as Granger causality method and Chow test are insufficient to explain causality. Recently, Pfister et al. (2019) proposed invariant causal prediction methods which can be applicable in time series data. In this paper, we introduce the method of Pfister et al. (2019) and use the method to find macroeconomic variables invariantly affecting the won-dollar exchange rate.

Displacements, damage measures and response spectra obtained from a synthetic accelerogram processed by causal and acausal Butterworth filters

  • Gundes Bakir, Pelin;Richard, J. Vaccaro
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.409-430
    • /
    • 2006
  • The aim of this study is to investigate the reliability of strong motion records processed by causal and acausal Butterworth filters in comparison to the results obtained from a synthetic accelerogram. For this purpose, the fault parallel component of the Bolu record of the Duzce earthquake is modeled with a sum of exponentially damped sinusoidal components. Noise-free velocities and displacements are then obtained by analytically integrating the synthetic acceleration model. The analytical velocity and displacement signals are used as a standard with which to judge the validity of the signals obtained by filtering with causal and acausal filters and numerically integrating the acceleration model. The results show that the acausal filters are clearly preferable to the causal filters due to the fact that the response spectra obtained from the acausal filters match the spectra obtained from the simulated accelerogram better than that obtained by causal filters. The response spectra are independent from the order of the filters and from the method of integration (whether analytical integration after a spline fit to the synthetic accelerogram or the trapezoidal rule). The response spectra are sensitive to the chosen corner frequency of both the causal and the acausal filters and also to the inclusion of the pads. Accurate prediction of the static residual displacement (SRD) is very important for structures traversing faults in the near-fault regions. The greatest adverse effect of the high pass filters is their removal of the SRD. However, the noise-free displacements obtained by double integrating the synthetic accelerogram analytically preserve the SRD. It is thus apparent that conventional high pass filters should not be used for processing near-fault strong-motion records although they can be reliably used for far-fault records if applied acausally. The ground motion parameters such as ARIAS intensity, HUSID plots, Housner spectral intensity and the duration of strong-motion are found to be insensitive to the causality of filters.

Prediction of Quantitative Traits Using Common Genetic Variants: Application to Body Mass Index

  • Bae, Sunghwan;Choi, Sungkyoung;Kim, Sung Min;Park, Taesung
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.149-159
    • /
    • 2016
  • With the success of the genome-wide association studies (GWASs), many candidate loci for complex human diseases have been reported in the GWAS catalog. Recently, many disease prediction models based on penalized regression or statistical learning methods were proposed using candidate causal variants from significant single-nucleotide polymorphisms of GWASs. However, there have been only a few systematic studies comparing existing methods. In this study, we first constructed risk prediction models, such as stepwise linear regression (SLR), least absolute shrinkage and selection operator (LASSO), and Elastic-Net (EN), using a GWAS chip and GWAS catalog. We then compared the prediction accuracy by calculating the mean square error (MSE) value on data from the Korea Association Resource (KARE) with body mass index. Our results show that SLR provides a smaller MSE value than the other methods, while the numbers of selected variables in each model were similar.

A Securities Company's Customer Churn Prediction Model and Causal Inference with SHAP Value (증권 금융 상품 거래 고객의 이탈 예측 및 원인 추론)

  • Na, Kwangtek;Lee, Jinyoung;Kim, Eunchan;Lee, Hyochan
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.215-229
    • /
    • 2020
  • The interest in machine learning is growing in all industries, but it is difficult to apply it to real-world tasks because of inexplicability. This paper introduces a case of developing a financial customer churn prediction model for a securities company, and introduces the research results on an attempt to develop a machine learning model that can be explained using the SHAP Value methodology and derivation of interpretability. In this study, a total of six customer churn models are compared and analyzed, and the cause of customer churn is inferred through the classification and data analysis of SHAP Value and the type of customer asset change. Based on the results of this study, it would be possible to use it as a basis for comprehensive judgment, such as using the Value of the deviation prediction result that can infer the cause of the marketing manager's actual customer marketing in the future and establishing a target marketing strategy for each customer.

Causal Relationship Analysis of Winning Factors in Football Game : Structural Equation Model (구조방정식 모형(SEM)을 이용한 축구 요인간 인과관계 분석)

  • Kim, Ju-Hyung;Chang, Kyu-Chang;Kim, Sang-Hye;Park, Jung-Min;Ha, Chunghun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.2
    • /
    • pp.101-107
    • /
    • 2015
  • Modern football has transformed into a scientific football based on data. With this trend, various methods for tactics studies and outcome prediction have been developed on the perspective of data analysis. In this paper, we propose a structural equation model for football game. We analyze critical factors that affect to the winning of game except psychological parts and the causal relationship between latent variables and observed variables is statistically verified through the proposed structural equation model. The results show that the Passing ability and the Ball possession affect to the Attack ability, and consequently it has a positive impact on the winning of game.

Tests for Causality from Internet Search to Return and Volatility of Cryptocurrency: Evidence from Causality in Moments (인터넷 검색을 통한 암호화폐 수익률 및 변동성에 대한 인과검정: 적률인과 접근)

  • Jeong, Ki-Ho;Ha, Sung Ho
    • The Journal of Information Systems
    • /
    • v.29 no.1
    • /
    • pp.289-301
    • /
    • 2020
  • Purpose This study analyzes whether Internet search of cryptocurrency has a causal relationship to return and volatility of cryptocurrency. Design/methodology/approach Google Trend was used as a measure of the level of Internet search, and the parametric tests of Granger causality in the 1st moment and the 2nd moment were adopted as the analysis method. We used Bitcoin's dollar-based price, which is the No. 1 market value among cryptocurrency. Findings The results showed that the Internet search measured by Google Trends has a causal relationship to cryptocurrency in both average and volatility, while there is a difference in causality and its degree according to the search area and category that Google Trend user should set. Because the Granger causality is based on the improvement of prediction, the analysis results of this study indicate that Internet search can be used as a leading indicator in predicting return and volatility of cryptocurrency.

Quantitative Analysis of GIS-based Landslide Prediction Models Using Prediction Rate Curve (예측비율곡선을 이용한 GIS 기반 산사태 예측 모델의 정량적 비교)

  • 지광훈;박노욱;박노욱
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.199-210
    • /
    • 2001
  • The purpose of this study is to compare the landslide prediction models quantitatively using prediction rate curve. A case study from the Jangheung area was used to illustrate the methodologies. The landslide locations were detected from remote sensing data and field survey, and geospatial information related to landslide occurrences were built as a spatial database in GIS. As prediction models, joint conditional probability model and certainty factor model were applied. For cross-validation approach, landslide locations were partitioned into two groups randomly. One group was used to construct prediction models, and the other group was used to validate prediction results. From the cross-validation analysis, it is possible to compare two models to each other in this study area. It is expected that these approaches will be used effectively to compare other prediction models and to analyze the causal factors in prediction models.

System dynamic modeling and scenario simulation on Beijing industrial carbon emissions

  • Wen, Lei;Bai, Lu;Zhang, Ernv
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.355-364
    • /
    • 2016
  • Beijing, as a cradle of modern industry and the third largest metropolitan area in China, faces more responsibilities to adjust industrial structure and mitigate carbon emissions. The purpose of this study is aimed at predicting and comparing industrial carbon emissions of Beijing in ten scenarios under different policy focus, and then providing emission-cutting recommendations. In views of various scenarios issues, system dynamics has been applied to predict and simulate. To begin with, the model has been established following the step of causal loop diagram and stock flow diagram. This paper decomposes scenarios factors into energy structure, high energy consumption enterprises and growth rate of industrial output. The prediction and scenario simulation results shows that energy structure, carbon intensity and heavy energy consumption enterprises are key factors, and multiple factors has more significant impact on industrial carbon emissions. Hence, some recommendations about low-carbon mode of Beijing industrial carbon emission have been proposed according to simulation results.

Evaluation and Analysis of Gwangwon-do Landslide Susceptibility Using Logistic Regression (로지스틱 회귀분석 기법을 이용한 강원도 산사태 취약성 평가 및 분석)

  • Yeon, Young-Kwang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.116-127
    • /
    • 2011
  • This study conducted landslide susceptibility analysis using logistic regression. The performance of prediction model needs to be evaluated considering two aspects such as a goodness of fit and a prediction accuracy. Thus to gain more objective prediction results in this study, the prediction performance of the applied model was evaluated considering two such evaluation aspects. The selected study area is located between Inje-eup and Buk-myeon in the middle of Kwangwon. Landslides in the study area were caused by heavy rain in 2006. Landslide causal factors were extracted from topographic map, forest map and soil map. The evaluation of prediction model was assessed based on the area under the curve of the cumulative gain chart. From the results of experiments, 87.9% in the goodness of fit and 84.8% in the cross validation were evaluated, showing good prediction accuracies and not big difference between the results of the two evaluation methods. The results can be interpreted in terms of the use of environmental factors which are highly related to landslide occurrences and the accuracy of the prediction model.

Electric Power Demand Prediction Using Deep Learning Model with Temperature Data (기온 데이터를 반영한 전력수요 예측 딥러닝 모델)

  • Yoon, Hyoup-Sang;Jeong, Seok-Bong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.7
    • /
    • pp.307-314
    • /
    • 2022
  • Recently, researches using deep learning-based models are being actively conducted to replace statistical-based time series forecast techniques to predict electric power demand. The result of analyzing the researches shows that the performance of the LSTM-based prediction model is acceptable, but it is not sufficient for long-term regional-wide power demand prediction. In this paper, we propose a WaveNet deep learning model to predict electric power demand 24-hour-ahead with temperature data in order to achieve the prediction accuracy better than MAPE value of 2% which statistical-based time series forecast techniques can present. First of all, we illustrate a delated causal one-dimensional convolutional neural network architecture of WaveNet and the preprocessing mechanism of the input data of electric power demand and temperature. Second, we present the training process and walk forward validation with the modified WaveNet. The performance comparison results show that the prediction model with temperature data achieves MAPE value of 1.33%, which is better than MAPE Value (2.33%) of the same model without temperature data.