• Title/Summary/Keyword: cationic starch

Search Result 60, Processing Time 0.021 seconds

Study on Drainage and Physical Properties of KOCC Handsheet Containing Pretreated Wooden Fillers (전처리 목질계 충전제를 이용한 KOCC 수초지의 탈수속도와 물성 변화)

  • Chae, Hee-Jae;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.21-29
    • /
    • 2011
  • Recently, the use of recycled fibers was increased in order to replace the virgin pulp for low production cost and forest conservation. However, the recycled fibers decreases drainage rate, papermaking efficiency and product quality by short fibers and low wettability because of hornification. To overcome the limitation of low drainage rate, the technology of organic fillers were applied. Wooden fillers gave high bulk and stiffness of paper, but they reduced the strength of paper. In order to improve strength properties 4 types of strength additives were added and analyzed. Cationic starch, branched strength additive, linear wet strength additive, and linear dry strength additive were used. The drainage rate and paper properties such as bulk, air permeability and tensile strength were measured. As results of analysis, addition of branch type of strength agent such as C-starch was effective than linear type of strength agent in the drainage rate. Nevertheless there was no effect on the drainage rate by adding the pretreated wooden fillers. By adding the pretreated wooden fillers, bulk, air permeability and tensile strength of handsheets were improved with low dosage than non-pretreated fillers.

Emission of Far-infrared Ray in Packaging Paper

  • Lee, Ji-Young;Kim, Chul-Hwan;Jung, Ho-Gyeong;Shin, Tae-Gi;Seo, Jeong-Min;Lee, Young-Rok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.5
    • /
    • pp.47-52
    • /
    • 2008
  • The far-infrared ray (FIR) has been applied to various fields such as medical therapy, kitchen utensils, bath supplies, and so on. The FIR-emitting agent was used to make functional paperboards to have freshness-maintaining ability. The FIR-emitting agent was diluted with different concentrations at 0.5% starch solution, and the FIR-emitting solutions were coated on paperboards, i.e., liner. The more the concentration of the FIR radiating agent increased at 0.5% cationic starch solution, the higher FIR emissivity and emission power of paperboards increased. The corrugated boxes made of paperboards coated by the FIR-radiating agents at over 5% dilution concentration endowed mandarin oranges in the boxes with greater antimicrobial activity than those in boxes made of paperboards coated by the agent at below 5% concentration. In addition, it was ascertained that treatment of the FIR agents rarely affected strength properties of paperboards.

Use of Waste Woods for Developing Environment-friendly Shock-absorbing Materials

  • Kim, Chul-Hwan;Song, Dae-Bin;Lee, Young-Min;Kim, Jae-Ok;Kim, Gyeong-Yun;Shin, Tae-Gi;Park, Chong-Yawl
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.475-478
    • /
    • 2006
  • Environment-friendly shock-absorbing materials were made using a vacuum forming method from waste wood collected from local mountains in Korea. The waste wood was pulped by thermomechanical pulping. The TMP cushions showed superior shock-absorbing properties with lower elastic moduli compared to EPS and pulp mold. Even though the TMP cushions made using different suction times had many free voids in their inner fiber structure, their apparent densities were a little higher than EPS and much lower than pulp mold. The addition of cationic starch improved the elastic modulus of the TMP cushions without increasing the apparent density, which was different from surface sizing with starch. The porosity of the TMP cushions was a little greater than EPS and much less than pulp mold. Finally, the TMP cushions have great potential to endure external impacts occurring during goods distribution.

  • PDF

Development of Environment-friendly Cushioning Materials by Pulping of Waste Residual Woods (폐잔재의 펄프화를 통한 환경친화적 완충소재의 개발)

  • Lee, Young-Min;Kim, Chul-Hwan;Kim, Jae-Ok;Kim, Gyeong-Yun;Shin, Tae-Gi;Song, Dae-Bin;Park, Chong-Yawl
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.2 s.115
    • /
    • pp.61-71
    • /
    • 2006
  • Environment-friendly shock-absorbing (cushioning) materials were made using a vacuum forming method from waste wood collected from local mountains in Korea. The waste wood was pulped by thermomechanical pulping. The TMP cushions showed superior shock-absorbing properties with lower elastic moduli compared to EPS(Expanded Polystyrene) and pulp mold. Even though the TMP cushions made using at different suction times had many free voids in their inner fiber structures, their apparent densities were a little higher than EPS and much lower than pulp mold. The addition of cationic starch improved elastic modulus of the TMP cushions without increasing the apparent density, which was different from surface sizing with starch. The porosity of the TMP cushions was a little greater than EPS and much less than pulp mold. Finally, the TMP cushions have great potential to endure external impacts occurring during goods distribution.

Effect of polyelectrolyte types in Layer-by-Layer multilayering treatment on physical properties of paper (Layer-by-Layer 다층흡착 처리 시 고분자전해질 종류가 종이의 물성에 미치는 영향)

  • Lee, Sung-Rin;Ryu, Jae-Ho;Chin, Seong-Min;Youn, Hye-Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.4
    • /
    • pp.65-72
    • /
    • 2009
  • We investigated the effect of polyelectrolyte types in Layer-by-Layer multilayering and furnish combination on physical properties of paper. Handsheets were made from pulp fibers with different polyelectrolytes composition, and their density, formation, tensile strength, strain, tear strength and burst strength were evaluated. The density of handsheet was slightly decreased by polyelectrolyte multilayering. Formation did not show a significant change, but all mechanical properties were increased by polyelectrolyte multilayering. Remarkable improvement in tensile and tear strengths was obtained when pulp fibers were treated with cationic starch and poly styrene 4-sulfonate. Irrespectively of final ionicity of pulp fiber, tensile index, strain and tear strength of paper could be improved simultaneously by polyelectrolyte multilayering.

Interaction between Polyelectrolytes Layer-by-Layer Assembled Fibers and Fluorescent Whitening Agent (고분자전해질 LbL multilayering 처리된 섬유와 형광증백제와의 반응성)

  • Sim, Kyu-Jeong;Lee, Sung-Rin;Chin, Seong-Min;Ryu, Jae-Ho;Youn, Hye-Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.4
    • /
    • pp.71-77
    • /
    • 2010
  • To utilize modified pulp fibers in papermaking system, it is necessary to evaluate the interaction between modified fibers and papermaking additives. Fluorescent whitening agent (FWA) is an important additive which has been widely used for production of writing and printing paper. We modified pulp fiber surface by Layer-by-Layer multilayering of polyelectrolytes, and investigated the interaction between these fibers and FWA used in internal addition or surface treatment. Pulp fiber with cationic surface charge showed a good affinity to internal FWA. For FWA in surface sizing agent, whiteness and brightness of paper was dependent on pickup weight and polyelectrolyte type. Pulp fibers with C-starch/PSS multilayer showed better optical properties than poly-DADMAC/PSS treatment. It indicated that polyelectrolyte type in Layer-by-Layer multilayering as well as a good affinity to FWA is important to get better whiteness and brightness.

Effect of Shear Condition on Washless Polyelectrolytes Multilayering Treatment on GCC (전단 조건이 중질탄산칼슘의 무세척 고분자전해질 다층흡착 처리에 미치는 영향)

  • Lee, Jegon;Sim, Kyujeong;Lee, Hak Lae;Youn, Hye Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.5
    • /
    • pp.51-60
    • /
    • 2014
  • To find a practical application approach of polyelectrolyte multilayering (PEM) on inorganic filler, we introduced PEM process without washing step and investigated the effect of shear condition on the washless PEM treatment of ground calcium carbonate (GCC). Washless multilayering on GCC was conducted under various shear conditions such as stirring, homogenization, and ultrasonication. Highly charged polyelectrolytes combination of polydiallyldimethylammonium chloride (PDADMAC) and poly sodium 4-styrene sulfonate (PSS) and low charged polyelectrolytes combination with cationic starch and anionic polyacrylamide (PAM) were compared. In the case of highly charged polyelectrolytes combination, shear conditions did not affect the zeta potential and the particle size of treated GCC. However, the modified GCC particles with low charged polyelectrolytes were more dispersed under higher shear condition while maintaining the zeta potential. In addition, GCC was successfully modified through laboratory inline washless polyelectrolyte multilayering system which consists of homogenizers and pumps.

Utilization of Wastepaper Fibers for Development of Environment-friendly Shock-Absorbing Materials (환경친화적 완충재의 개발을 위한 폐지 섬유의 이용)

  • Kim, Gyeong-Yun;Kim, Chul-Hwan;Lee, Young-Min;Song, Dae-Bin;Shin, Tae-Gi;Kim, Jae-Ok;Park, Chong-Yawl
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.2 s.115
    • /
    • pp.52-60
    • /
    • 2006
  • Environment-friendly shock-absorbing materials were made of wastepaper such as Korean old corrugated containers(KOCC) and Korean old newsprint (KONP) with a vacuum forming method. The plate-like cushioning materials made of KOCC and KONP respectively by vacuum forming showed superior shock-absorbing properties with lower elastic moduli compared to expanded polystyrene (EPS) and pulp mold. Even though the plate-like materials had many free voids in their fiber structure, their apparent densities (${\approx}0.1g/cm^3$) were a little higher than that of EPS (${\approx}0.03g/cm^3$) and much lower than that of pulp mold(${\approx}0.3g/cm^3$). However, the elastic moduli of the cushioning materials made of wastepaper were much lower than that of EPS or pulp mold. This finding implies that the cushioning materials made of KOCC fibers containing more lignin than KONP show better shock-absorbing properties than KONP. Moreover, the cushioning materials made of KOCC and KONP respectively showed greater porosity than pulp mold. The addition of cationic starch to the cushioning materials contributed to the increase in the elastic modulus to the same level as that of EPS. Furthermore, the deterioration in fiber quality by repeated use of wastepaper played a positive role in improving shock-absorbing ability.

Fabrication Processes and Properties of High Volume Fraction SiC Particulate Preform for Metal Matrix Composites (금속복합재료용 고부피분율 SiC분말 예비성형체의 제조공정과 특성)

  • 전경윤
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.184-191
    • /
    • 1998
  • The fabrication process and properties of SiC particulate preforms with high volume fraction above 50% were investigated. The SiC particulate preforms were fabricated by vacuum-assisted extraction method after wet mixing of SiC particulates of 48 ${\mu}m$ in diameter, $SiO_2$ as inorganic binder, cationic starch as organic binder and polyacrylamide as dispersant in distilled water. The SiC particulate preforms were consolidated by vacuum-assisted extraction, and were followed by drying and calcination. The drying processes were consisted with natural drying at $25^{\circ}C$ for 36 hrs and forced drying at 10$0^{\circ}C$ for 12 hrs in order to prevent the micro-cracking of SiC particulates preform. The compressive strengths of SiC particulate preforms were dependent on the inorganic binder content, calcination temperature and calcination time. The compressive strength of SiC preform increased from 0.47 MPa to 1.79 MPa with increasing the inorganic binder content from 1% to 4% due to the increase of $SiO_2$ flocculant between the interfaces of SiC particulates. The compressive strength of SiC preform increased from 0.90 MPa to 3.21 MPa with increasing the calcination temperatures from 800 to 120$0^{\circ}C$ under identical calcination time of 4hrs. The compressive strength of SiC preform increased from 0.92 to 1.95 MPa with increasing the calcination time from 2 hrs to f hrs at calcination temperature of 110$0^{\circ}C$. The increase of compressive strength of SiC preform with increasing the calcination temperature and time is due to the formation of crystobalite $SiO_2$ phase at the interfaces of SiC particulates.

  • PDF

Use of Wastepaper for Developing Environment-friendly Shock-absorbing Materials

  • Kim, Chul-Hwan;Song, Dae-Bin;Lee, Young-Min;Kim, Jae-Ok;Kim, Gyeong-Yun;Shin, Tae-Gi;Park, Chong-Yawl
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.471-474
    • /
    • 2006
  • Environment-friendly shock-absorbing materials were made of wastepaper such as old corrugated containers (OCC) and old newspapers (ONP) with a vacuum forming method. The plate-like cushioning materials made of OCC and ONP respectively by vacuum forming showed superior shock-absorbing properties with lower elastic moduli compared to expanded polystyrene (EPS) and pulp mold. Even though the plate-like materials had many free voids in their fiber structure, their apparent densities (${\approx}0.1g/cm^{3}$) were a little higher than that of EPS (${\approx}0.03g/cm^{3}$) and much lower than that of pulp mold (${\approx}0.3g/cm^{3}$). However, the elastic moduli of the cushioning materials made of wastepaper were much lower than that of EPS or pulp mold. This finding implies that the cushioning materials made of OCC fibers containing more lignin than ONP show better shock-absorbing properties than ONP Moreover, the cushioning materials made of OCC and ONP respectively showed greater porosity than pulp mold. The addition of cationic starch to the cushioning materials contributed to an increase in the elastic modulus to the same level as that of EPS. Furthermore, the deterioration in fiber quality by repeated use of wastepaper played a great role in improving shock-absorbing ability.

  • PDF