• Title/Summary/Keyword: cationic compounds

Search Result 53, Processing Time 0.014 seconds

Three Cyanide-Bridged One-Dimensional Single Chain CoIII-MnII Complexes: Rational Design, Synthesis, Crystal Structures and Magnetic Properties

  • Zhang, Daopeng;Zhao, Zengdian;Wang, Ping;Chen, Xia
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1581-1585
    • /
    • 2012
  • Two pyridinecarboxamide dicyanidecobalt(III) building blocks and two mononuclear seven-coordinated macrocycle manganese(II) compounds have been rationally selected to assemble cyanide-bridged heterobimetallic complexes, resulting in three cyanide-bridged $Co^{III}-Mn^{II}$ complexes. Single X-ray diffraction analysis show that these complexes $\{[Mn(L^1)][Co(bpb)]\}ClO_4{\cdot}CH_3OH{\cdot}0.5H_2O$ ($\mathbf{1}$), $\{[Mn(L^2)][Co(bpb)]\}ClO_4{\cdot}0.5CH_3OH$ ($\mathbf{2}$) and ${[Mn(L^1)][Co(bpb)]\}ClO_4{\cdot}H_2O$ ($\mathbf{3}$) ($L^1$ = 3,6-diazaoctane-1,8-diamine, $L^2$ = 3,6-dioxaoctano-1,8-diamine; $bpb2^{2-}$ = 1,2-bis(pyridine-2-carboxamido)benzenate, $bpmb2^{2-}$ = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate) all present predictable one-dimensional single chain structures. The molecular structures of these one-dimensional complexes consists of alternating units of $[Mn(L)]^{2+}$ ($L=L^1$ or $L^2$) and $[Co(L^{\prime})(CN)2]^-$ ($L^{\prime}=bpb2^{2-}$, or $bpmb2^{2-}$), forming a cyanide-bridged cationic polymeric chain with free $ClO_4{^-}$ as the balance anion. The coordination geometry of manganese(II) ion in the three one-dimensional complexes is a slightly distorted pentagonal-bipyrimidal with two cyanide nitrogen atoms at the trans positions and $N_5$ or $N_3O_2$ coordinating mode at the equatorial plane from ligand $L^1$ or $L^2$. Investigation over magnetic properties of these complexes reveals that the very weak magnetic coupling between neighboring Mn(II) ions connected by the diamagnetic dicyanidecobalt(III) building block. A best-fit to the magnetic susceptibility of complex ${\mathbf}{1}$ leads to the magnetic coupling constants $J=-0.084(3)cm^{-1}$.

Adsorption Features of Lead Ion on Waste Undaria pinnatifida (폐기된 해조류를 이용한 납 이온의 흡착 특성)

  • Seo Myung-Soon;Kim Dong-Su
    • Resources Recycling
    • /
    • v.13 no.4
    • /
    • pp.23-31
    • /
    • 2004
  • Basic studies have been conducted regarding the attempt of the utilization of waste Undaria pinnatifida as an adsorbent for the adsorption treatment of lead-containing wastewater. Undaria pinnatifida was found to be chiefly composed of hyo-carbonaceous compounds and have a fairly high specific surface area, which suggesting the possibility of its application as a Potential adsorbent. The electrokinetic Potential of Undaria pinnatifida particles was observed to be negatively highest at around pH 8 and the fact that its electrokinetic potentials are negative at the whole pH range supported it might be an efficient adsorbent especially for cationic adsorbates. Under the experimental conditions, $Pb^{2+}$ was found to mostly adsorb onto Undaria pinnatifida within a few minutes and reach the equilibrium in adsorption within ca. 30 minutes. The adsorption of $Pb^{2+}$ was exothermic and explained well by e Freundlich model. Acidic pretreatment of Undaria pinnatifida enhanced its adsorption capacity for $Pb^{2+}$ , however, the reverse was observed for alkaline pretreatment. The formation of organometallic complex between $Pb^{2+}$ and some functional groups on the surface of Undaria pinnatifida was considered to be one of the main drives for adsorption. Finally the adsorbability of$ Pb^{2+}$ was examined to be rather affected by several solution features such as the coexistence of other adsorbate, the variation of ionic strength, and the concentration of complexing agent.

Synthesis of AlPO4-type Mesoporous Materials Using Alum Sludge (Alum 슬러지를 이용한 AlPO4-계 다공성 물질의 합성)

  • Kang, Kwang Cheol;Kim, Young Ho;Kim, Jin-man;Lee, Choul Ho;Rhee, Seog Woo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.173-177
    • /
    • 2011
  • In this study, the formation of $AlPO_4$-type porous materials from alum sludge was investigated. The materials were synthesized by the reaction of aluminum hydroxide and phosphoric acid with an organic template. Cationic surfactant, natural humic acid, and amino acids were used for the organic template. The residual organic templates were removed by calcination at $600^{\circ}C$ in the air. Powder X-ray diffraction patterns showed the charicteristic patterns of the $AlPO_4$-type porous materials. The morphology of the material was examined using a scanning electron microscopy. The coordination environment of $Al^{3+}$ ion was investigated by $^{27}Al$ MAS NMR technique. Both tetrahedrally and octahedrally coordinated$Al^{3+}$ ions were found in the as-synthesized samples while all $Al^{3+}$ ions were tetrahedrally coordinated in the calcined products. The development of mesopore in the solid material was confirmed by the measurement of BET specific surface area. Finally, they were used for removal of toxic formaldehyde from the air and the formaldehyde molecules were adsorbed on the surface of pores. In conclusion, $AlPO_4$-type porous materials from alum sludge might be applicable in the removal of toxic volatile organic compounds from the air.